共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We studied the mechanism controlling the organization of actin filaments (AFs) inHydrocharis root hair cells, in which reverse fountain streaming occurs. The distribution of AFs and microtubules (MTs) in root hair
cells were analyzed by fluorescence microscopy and electron microscopy. AFs and MTs were found running in the longitudinal
direction of the cell at the cortical region. AFs were observed in the transvacuolar strand, but not MTs. Ultrastructural
studies revealed that AFs and MTs were colocalized and that MTs were closer to the plasma membrane than AFs. To examine if
MTs regulate the organization of AFs, we carried out a double inhibitor experiment using cytochalasin B (CB) and propyzamide,
which are inhibitors of AFs and MTs, respectively. CB reversibly inhibited cytoplasmic streaming while propyzamide alone had
no effect on it. However, after treatment with both CB and propyzamide, removal of CB alone did not lead to recovery of cytoplasmic
streaming. In these cells, AFs showed a meshwork structure. When propyzamide was also removed, cytoplasmic streaming and the
original organization of AFs were recovered. These results strongly suggest that MTs are responsible for the organization
of AFs inHydrocharis root hair cells. 相似文献
2.
J. Lepault A. W. McDowall Dr. C. J. P. Grimmelikhuijzen 《Cell and tissue research》1980,209(2):217-224
Summary Epithelial cells of nerve-free hydra contain septate and gap junctions. In thin sections the gap junctions are characterized by a gap of 3–4 nm. Freeze-fracture demonstrates the presence of septate junctions and two further types of structures: (i) the E-type or inverted gap junctions with particles in an en plaque conformation appearing as a raised plateau on the E-face or as a depression on the P-face; (ii) structures morphologically similar to gap junctions in rat liver, containing particles on the P-face and corresponding pits on the E-face, both having hexagonal packing with a lattice constant of 8 nm. We propose that these structures are also gap junctions. 相似文献
3.
Colocalization of APC and DLG at the tips of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons 总被引:1,自引:1,他引:0
Adenomatous polyposis coli gene product (APC) is a tumor suppressor linked to familial adenomatous polyposis and is thought to be involved in cellular polarization and migration in moving epithelial cells. APC interacts with the mammalian homolog of Discs large (DLG). DLG is a member of the membrane-associated guanylate kinase superfamily and is thought to function as a scaffolding protein that coordinates the assembly of a lateral plasma membrane-localized protein complex in epithelial cells. We confirmed the suitability of several anti-APC antibodies for immunocytochemical analysis. Using these antibodies, we showed that APC clusters were colocalized with DLG protein at cellular protrusions of subconfluent MDCK cells. A portion of the clusters was found at the tips of microtubules extending into the cellular protrusions. In addition, actin stress fibers converged near the clusters. When microtubules were disrupted by nocodazole, the colocalization of APC and DLG was lost due to the disappearance of APC clusters. However, the coclusters remained after depolymerization of actin filaments with latrunculin A. This is the first report showing colocalization of APC and DLG in non-polarized epithelial cells. This colocalization suggests that DLG functions not only at the lateral cell–cell contact sites of polarized epithelial cells but also at the protrusions of non-polarized epithelial cells through the interaction with APC protein. 相似文献
4.
Maja Matis 《BioEssays : news and reviews in molecular, cellular and developmental biology》2020,42(5):1900244
During morphogenesis, tissues undergo extensive remodeling to get their final shape. Such precise sculpting requires the application of forces generated within cells by the cytoskeleton and transmission of these forces through adhesion molecules within and between neighboring cells. Within individual cells, microtubules together with actomyosin filaments and intermediate filaments form the composite cytoskeleton that controls cell mechanics during tissue rearrangements. While studies have established the importance of actin-based mechanical forces that are coupled via intercellular junctions, relatively little is known about the contribution of other cytoskeletal components such as microtubules to cell mechanics during morphogenesis. In this review the focus is on recent findings, highlighting the direct mechanical role of microtubules beyond its well-established role in trafficking and signaling during tissue formation. 相似文献
5.
BackgroundThe influence of early-life growth pattern and body size on follicular lymphoma (FL) risk and survival is unclear. In this study, we aimed to investigate the association between gestational age, growth during childhood, body size, changes in body shape over time, and FL risk and survival.MethodsWe conducted a population-based family case-control study and included 706 cases and 490 controls. We ascertained gestational age, growth during childhood, body size and body shape using questionnaires and followed-up cases (median=83 months) using record linkage with national death records. We used a group-based trajectory modeling approach to identify body shape trajectories from ages 5–70. We examined associations with FL risk using unconditional logistic regression and used Cox regression to assess the association between body mass index (BMI) and all-cause and FL-specific mortality among cases.ResultsWe found no association between gestational age, childhood height and FL risk. We observed a modest increase in FL risk with being obese 5 years prior to enrolment (OR=1.43, 95 %CI=0.99–2.06; BMI ≥30 kg/m2) and per 5-kg/m2 increase in BMI 5 years prior to enrolment (OR=1.14, 95 %CI=0.99–1.31). The excess risk for obesity 5 years prior to enrolment was higher for ever-smokers (OR=2.00, 95 %CI=1.08–3.69) than never-smokers (OR=1.14, 95 %CI=0.71–1.84). We found no association between FL risk and BMI at enrolment, BMI for heaviest lifetime weight, the highest categories of adult weight or height, trouser size, body shape at different ages or body shape trajectory. We also observed no association between all-cause or FL-specific mortality and excess adiposity at or prior to enrolment.ConclusionWe observed a weak association between elevated BMI and FL risk, and no association with all-cause or FL-specific mortality, consistent with previous studies. Future studies incorporating biomarkers are needed to elucidate possible mechanisms underlying the role of body composition in FL etiology. 相似文献
6.
Season length,body size,and social polymorphism: size clines but not saw tooth clines in sweat bees 下载免费PDF全文
1. Annual insects are predicted to grow larger where the growing season is longer. However, transitions from one to two generations per year can occur when the season becomes sufficiently long, and are predicted to result in a sharp decrease in body size because available development time is halved. The potential for resulting saw‐tooth clines has been investigated only in solitary taxa with free‐living larvae. 2. Size clines were investigated in two socially polymorphic sweat bees (Halictidae): transitions between solitary and social nesting occur along gradients of increasing season length, characterised by the absence or presence of workers and offspring that are individually mass provisioned by adults. How the body size changes with season length was examined, and whether transitions in social phenotype generate saw‐tooth size clines. We measured Lasioglossum calceatum and Halictus rubicundus nest foundresses originating from more than 1000 km of latitude, encompassing the transition between social and solitary nesting. 3. Using satellite‐collected temperature data to estimate season length, it was shown that both species were largest where the season was longest. Body size increased linearly with season length in L. calceatum and non‐linearly in H. rubicundus but the existence of saw‐tooth clines was not supported. 4. The present results suggest that because the amount of food consumed by offspring during development is determined by adults, environmental and social influences on the provisioning strategies of adult bees may be more important factors than available feeding time in determining offspring body size in socially polymorphic sweat bees. 相似文献
7.
The organization of microtubules (MTs) in the generative cell (GC) of germinated pollen and pollen tube in Amaryllis vittata Ait. has been studied with electron microscopy. At the beginning of pollen germination, the GC is long elliptic in shape, and is surrounded by its own membrane and also by that of the vegetative cell (VC) ,both of which appear undulated. In cross section, the GC appears roundish and has many lobes. The MT system of GC is mainly organized in bundles, but single MTs can also be observed. The MT bundles are generally located in the lobes, directly beneath the plasma membrane of the cell. These MT bundles orientate along the longitudinal axis of the cell. They are formed by aggregation of 5–6 MTs at least,more often about 30 MTs. In the bundles the MTs are often linked to each other by "cross-bridge". The single tubules in the eytopiasm distribute randomly in different orientations. When the GC has migrated into the pollen tube after germination ,it becomes elongated and has cytoplasmic extensions both in the anterior and posterior end of the cell. The organization of MTs of the GC in pollen tube is similar to that in the germinated pollen grain,but the number of MTs in a bundle often increases to 50–60. In the bundle the "cross-bridges" between the MTs which always link 3–5 MTs, are still seen clearly. Positional shift between the GC and Vegetative nucleus (VN) may take place during the growth of pollen tube. The physical association between GC and VN may be demonstrated some ultrastructural figures. It may be seen that irregular cytoplasmic extensions in the anterior end of the GC is always enclosed by the VN and the projections of the cytoplasmic extensions lie within enclaves of the VN. There are many MTs sheets in the lobes or extensions in the cytoplasm of the GC. Thus the present study demonstrates that MTs have an important role in maintaining the peculiar shape of the GC and the close association between GC and VN. However, it seems that the MTs are probably also engaged in the movement of the GC during pollen growth. 相似文献
8.
Different cell size and cell number contribution in two newly established and one ancient body size cline of Drosophila subobscura 总被引:2,自引:0,他引:2
Calboli FC Gilchrist GW Partridge L 《Evolution; international journal of organic evolution》2003,57(3):566-573
Latitudinal genetic clines in body size occur in many ectotherms including Drosophila species. In the wing of D. melanogaster, these clines are generally based on latitudinal variation in cell number. In contrast, differences in wing area that evolve by thermal selection in the laboratory are in general based on cell size. To investigate possible reasons for the different cellular bases of these two types of evolutionary response, we compared the newly established North and South American wing size clines of Drosophila subobscura. The new clines are based on latitudinal variation in cell area in North America and cell number in South America. The ancestral European cline is also based on latitudinal variation in cell number. The difference in the cellular basis of wing size variation in the American clines, which are roughly the same age, together with the similar cellular basis of the new South American cline and the ancient European one, suggest that the antiquity of a cline does not explain its cellular basis. Furthermore, the results indicate that wing size as a whole, rather than its cellular basis, is under selection. The different cellular bases of different size clines are most likely explained either entirely by chance or by different patterns of genetic variance--or its expression--in founding populations. 相似文献
9.
Depolarization of mouse brain synaptosomes elicits transmitter release and modifies factors that regulate cytoskeletal actin (C-actin) levels. We previously reported (Bernstein and Bamburg, J. Neurosci. 1985. 5:2565–2569) that depolarization causes a release of about 25% of the actin associated with the cytoskeleton of synaptosomal lysates. From our current studies we conclude that depolarization only transiently perturbs the balance in opposing factors which regulate C-actin levels in lysates. Prolonged incubation of the lysates permits the actin to reequilibrate so that no difference between C-actin levels of resting and depolarized synaptosomes is observed. Both the initial transient release of actin from the cytoskeleton and its reassociation with the cytoskeleton during prolonged incubation are calcium dependent and involve factors in both the cytoskeletal and soluble fractions. Depolarization initiates modifications that both increase and decrease the C-actin level probably through mechanisms involving calcium sensitive actin binding proteins.Special issue dedicated to Dr. E. M. Shooter and Dr. S. Varon. 相似文献
10.
Scappaticci AA Kass-Simon G 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2008,150(4):415-422
The role of chemical neurotransmission in nematocyst discharge was investigated by stimulating the cnidocils of nematocysts in ablated tentacles of Hydra vulgaris with a piezoelectrically-driven glass probe, in the presence of selected neurotransmitters. Acetylcholine, dopamine, epinephrine, glycine, and serotonin (10− 4, 10− 6, 10− 8 M) per se, did not alter stenotele and desmoneme discharge. γ-Amino-butyric acid (GABA) significantly increased desmoneme discharge when the cnidocil of another desmoneme in the same or adjacent battery cell complex was stimulated without affecting the discharge rates of the directly stimulated desmonemes or stenoteles. Baclofen (GABAB agonist) mimicked the increase; its antagonist, phaclofen, counteracted it. GABAA agonists and antagonists did not alter discharge rates. Glutamate caused a dose-dependent increase in the discharge rate of directly stimulated stenoteles; distant stenotele and desmoneme discharge rates were unaffected. Kainate, AMPA, and NMDA, per se, did not alter discharge rates. Co-administration of NMDA and kainate mimicked glutamate's effects. AMPA plus NMDA increased discharge rates. DAP-5 (NMDA antagonist) and CNQX, (kainate/AMPA antagonist) counteracted the increase. The findings suggest that metabotropic GABA is involved in recruiting desmonemes by disinhibiting those previously inhibited, and that the NMDA/kainate–AMPA mechanism regulating Ca++ entry in higher neuroeffector systems is an early-evolved process, which, in hydra, modulates nematocyst discharge. 相似文献
11.
Xin Zhou Chun Xiao Yu Li Yanna Shang Dongqin Yin Siying Li Bo Xiang Ran Lu Yi Ji Yang Wu Wentong Meng Hongyan Zhu Jin Liu Huozhen Hu Xianming Mo Hong Xu 《遗传学报》2018,45(8):433-442
In most kinds of animal cells, the centrosome serves as the main microtubule organizing center (MTOC) that nucleates microtubule arrays throughout the cytoplasm to maintain cell structure, cell division and intracellular transport. Whereas in epithelial cells, non-centrosomal MTOCs are established in the apical domain for generating asymmetric microtubule fibers and cilia in epithelial cells for the organ morphogenesis during embryonic development. However, the mechanism by which MTOCs localize to the apical domain in epithelial cells remains largely unknown. Here, we show that Mid1ip1b has a close interaction with γ-tubulin protein, the central component of MTOC, and modulates lumen opening of the neural tube, gut, intestine, and kidney of zebrafish. Knockdown or dominant negative effect of Mid1ip1b resulted in failure of lumen formation of the organs as aforementioned. Moreover, the non-centrosomal MTOCs were unable to orientate to the apical domain in Mid1ip1b knockdown epithelial cells, and the centrosomal MTOCs were inaccurately placed in the apical domain, resulting in defective formation of asymmetric microtubules and misplacement of cilia in the apical domain. These data uncover a molecule that controls the proper localization of MTOCs in the apical domain in epithelial cells for organ morphogenesis during embryonic development. 相似文献
12.
Hernandez Y Castillo C Roychowdhury S Hehl A Aley SB Das S 《International journal for parasitology》2007,37(1):21-32
Although identified as an early-diverged protozoan, Giardia lamblia shares many similarities with higher eukaryotic cells, including an internal membrane system and cytoskeleton, as well as secretory pathways. However, unlike many other eukaryotes, Giardia does not synthesize lipids de novo, but rather depends on exogenous sources for both energy production and organelle or membrane biogenesis. It is not known how lipid molecules are taken up by this parasite and if endocytic pathways are involved in this process. In this investigation, we tested the hypothesis that highly regulated and selective lipid transport machinery is present in Giardia and necessary for the efficient internalization and intracellular targeting of ceramide molecules, the major sphingolipid precursor. Using metabolic and pathway inhibitors, we demonstrate that ceramide is internalized through endocytic pathways and is primarily targeted into perinuclear/endoplasmic reticulum membranes. Further investigations suggested that Giardia uses both clathrin-dependent pathways and the actin cytoskeleton for ceramide uptake, as well as microtubule filaments for intracellular localization and targeting. We speculate that this parasitic protozoan has evolved cytoskeletal and clathrin-dependent endocytic mechanisms for importing ceramide molecules from the cell exterior for the synthesis of membranes and vesicles during growth and differentiation. 相似文献
13.
We examined body length differences between the beetle fauna of Eucalyptus plantation forests and remnant Eucalyptus forest in the same region using aerial and arboreal sampling. Mean body length of plantation-using species was greater than
for remnant forest species, and the same pattern was apparent in the mean of all individuals collected regardless of species.
This pattern was true for both Malaise-trap-collected beetles (aerial) and canopy-collected (arboreal) beetles. The tendency
for plantation-restricted species to have longer bodies is significant even if clade is treated as a random factor in the
analysis. Greater body length among plantation-using species is consistent with a few other studies that have found body size
of insect species in early successional environments is typically greater than in late successional environments. Some studies
suggest that larger species are better dispersers, which can rapidly colonise early successional habitats. In this study,
however, there was little relationship between body length and the number of sites occupied; suggesting dispersal was not
a major determinant of community membership. Two different patterns in this study support the hypothesis that body size differences
are linked to trophic structure of the communities. First, the body length shift comparing remnant users to plantation users
was greater among phytophages than for predators or saprophages. Second, saprophages were typically smaller than phytophages,
and constituted a larger fraction of the remnant forest using fauna, driving down the mean body length in the saprophage-rich
remnant forest community. 相似文献
14.
We compared the average body size (wing span) of Finnish geometrid moth species in relation to their degree of polyphagy and quality of food. The first hypothesis, originally constructed for mammals and birds, states that smaller species should more often be specialists than large species, because of the different relationships between body size and home range size, and body size and daily energy requirements. According to the second hypothesis, smaller species should feed more often on herbs than do larger species, because of the different defence mechanisms of herbs and woody plants. The results support both of these hypotheses. Specialist species are smaller than oligophagous or polyphagous species, and small species concentrate on herbs. We conclude that quality and quantity of food resources may explain the pattern. 相似文献
15.
Summary The polarity of a growing pollen tube is clearly reflected by a distinct zonation of the cytoplasmic content. The vegetative nucleus and the generative cell (GC) are located in the tip region of the tube, and the basal cytoplasmic portion is highly vacuolated. Using pollen tubes ofNicotiana sylvestris Spegazz. & Comes grown in vitro, we examined the effects of varying concentrations of the microtubule inhibitors colchicine and propham. The depolymerization of the cortical microtubules by 25 M colchicine led to a disorganization of the cytoplasm, i.e., vacuolization of the tip region, and to a deranged position of both the vegetative nucleus and the generative cell. The same concentration of colchicine inhibited tube growth by 10–20% of the control. Mitosis of the GC was not affected. Only from concentrations of 200 M the configuration of the GC's microtubules was altered and an inhibition of mitosis was observed. At this concentration the disorganization of the cytoplasm was always reversible, but neither inhibition of mitosis nor derangement of the nuclear positioning was. At 1,800 M colchicine, pollen tube growth was inhibited by 50% of the control. Using propham, the same three steps of action were observed, although propham proved to be about a hundred times more effective than colchicine. We conclude that the cortical microtubules of the pollen tube are involved in maintaining cellular polarity, probably as a part of a heterogeneous cytoskeletal network including also microfilaments and membranous elements. Nuclear positioning seems to be dependent on both, the tube's cortical and the GC's microtubules. A possible involvement of the extracellular matrix in maintaining intracytoplasmic polarity is suggested.Abbreviations DAPI
4,6-diamidino-2-phenylindole
- EGTA
ethyleneglycol-bis-(aminoethyl ether) tetraacetic acid
- GC
generative cell
- MF
microfilament
- MT
microtubule
- PEM-buffer
50 mM PIPES, 1 mM EGTA, 2 mM MgSO4, pH 6.9
- PBS
phosphate buffered saline
- PIPES
piperazine-bis-ethanesulphonic acid
- PTG-test
pollen tube growth test
- VN
vegetative nucleus
Dedicated to Professor Peter Sitte on the occasion of his 65th birthday 相似文献
16.
Summary In the first step of scale formation several small vesicles originating from the Golgi fuse to form a large flattened primary vesicle associated with the surface of one plastid. In a second step this vesicle undergoes several morphogenetic events to form the mold of ornamented scales elaborated in the lumen of the scale forming vesicle (SFV). Thick filaments composed of a stack of actin microfilaments (MFs) settle on the membrane of the SFV turned toward the plastid. They are laterally cross-linked to each other and to the SFV membrane and assembled in a horseshoe figure at the place of the future base-plate of the scale. On the center of the vesicle free of actin MF, where the periplastidial endoplasmic reticulum (PER) and the SFV membranes are glued, a protrusion occurs to form a diverticulum which is to become the future hull or the spine of the finished scale. On the external side of the SFV a microfibrillar network covers the surface of the vesicle. Microtubules (MTs) originating near the kinetosomes change their rectilinear course to follow the two longitudinal margins and the diverticulum of the SFV. MTs are not directly attached to the membrane of the SFV but rather through the microfibrillar network. A set of observations suggest that actin MFs have a structural function in maintaining the shape of the vesicle rather than a role in the migration of the SFV on the surface of the plastid. MTs probably play a role in the migration and in the morphogenesis of the SFV in conjunction with microfibrils. Also, the formation of SFVs and silica deposition are compared to that in diatoms. 相似文献
17.
Vincenzo Trotta Juliana Duran Prieto Donatella Battaglia Paolo Fanti 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(2):439-454
Phenotypic plasticity of wing size and shape has been evaluated in Aphidius ervi developing in its host, Acyrthosiphon pisum, parasitized at seven different ages. The parasitoid wing size was used as an estimator of both whole body size and its cellular composition. No size difference was observed in A. ervi adults emerged from aphids 1, 2 or 3 days old at parasitization. Body size then increased in A. ervi emerged from hosts older at parasitization. Body size values as related to host age at parasitization were achieved by adjusting developmental time, developmental rate or both. Parasitoids of similar size, but developed in hosts parasitized at different ages, had different wing cellular composition, while the increase of parasitoid body size was related to a general increase in both cell area and cell number. These results seem to suggest a trade‐off between adult size and developmental time, at least for parasitoids developed at the two extremes of host ages at parasitization, and that A. ervi can reach the same adult size via different trajectories, adapting its ontogenetic processes. Wing shape was typical for all the different parasitoid classes considered and differed strongly between males and females, independent of their size. Parasitoid males (haploids) and females (diploids) did not differ in either cell area or cell number, suggesting a possible sex‐determined dosage compensation in somatic tissue endoreplication. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 439–454. 相似文献
18.
19.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components. 相似文献
20.
Posterior tooth size, body size, and diet in South African gracile Australopithecines 总被引:1,自引:0,他引:1
M H Wolpoff 《American journal of physical anthropology》1973,39(3):375-393
A model relating relative size of the posterior teeth to diet is suggested for forest and savanna primates and Homo. Relative tooth size is calculated for the South African gracile australopithecine sample using posterior maxillary area sums and size estimates based on four limb bones. A number of limbs were shown to be non-hominid. Comparisons show the South African gracile sample apparently adapted to a very heavily masticated diet with relative tooth size significantly greater than any living hominoid. Periodic intensive utilization of grains and roots combined with scavenged animal protein are suggested as the most likely dietary reconstruction. 相似文献