首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.  相似文献   

2.
Dictyostelium is the only non-metazoan with functionally analyzed SH2 domains and studying them can give insights into their evolution and wider potential. LrrB has a novel domain configuration with leucine-rich repeat, 14-3-3 and SH2 protein–protein interaction modules. It is required for the correct expression of several specific genes in early development and here we characterize its role in later, multicellular development. During development in the light, slug formation in LrrB null (lrrB-) mutants is delayed relative to the parental strain, and the slugs are highly defective in phototaxis and thermotaxis. In the dark the mutant arrests development as an elongated mound, in a hitherto unreported process we term dark stalling. The developmental and phototaxis defects are cell autonomous and marker analysis shows that the pstO prestalk sub-region of the slug is aberrant in the lrrB- mutant. Expression profiling, by parallel micro-array and deep RNA sequence analyses, reveals many other alterations in prestalk-specific gene expression in lrrB- slugs, including reduced expression of the ecmB gene and elevated expression of ampA. During culmination ampA is ectopically expressed in the stalk, there is no expression of ampA and ecmB in the lower cup and the mutant fruiting bodies lack a basal disc. The basal disc cup derives from the pstB cells and this population is greatly reduced in the lrrB- mutant. This anatomical feature is a hallmark of mutants aberrant in signaling by DIF-1, the polyketide that induces prestalk and stalk cell differentiation. In a DIF-1 induction assay the lrrB- mutant is profoundly defective in ecmB activation but only marginally defective in ecmA induction. Thus the mutation partially uncouples these two inductive events. In early development LrrB interacts physically and functionally with CldA, another SH2 domain containing protein. However, the CldA null mutant does not phenocopy the lrrB- in its aberrant multicellular development or phototaxis defect, implying that the early and late functions of LrrB are affected in different ways. These observations, coupled with its domain structure, suggest that LrrB is an SH2 adaptor protein active in diverse developmental signaling pathways.  相似文献   

3.
Model organisms like Caenorhabditis elegans allow the study of growth cone motility and guidance in vivo. We are using circumferential axon guidance in C. elegans to study both the mechanisms of guidance and the interactions between different guidance systems in vivo. A genetic screen has identified suppressors of the specific axon guidance defects caused by ectopic expression of UNC-5, the repulsive receptor for the UNC-6/netrin guidance cue. These mutations identify eight genes whose products are required for the function of UNC-5 in these cells. In principle, the functions of some of these genes may involve unc-73, which encodes a multidomain, cytoplasmic protein that is an activator of the rac and rho GTPases. Loss of UNC-73 causes errors in axon guidance, and it is hypothesized that UNC-73 acts in multiple signaling pathways used by guidance receptors on the growth cone surface to regulate the underlying cytoskeleton. Here we summarize and discuss these recent developments that are advancing our understanding of growth cone signal transduction in vivo.  相似文献   

4.
李伟  李婷婷  刘洪  赵彦艳 《遗传》2010,32(7):712-718
SH2D4A是SH2蛋白家族成员之一,可能参与酪氨酸蛋白激酶相关受体介导的信号转导,调节细胞的生长、增殖和分化,进而影响人类疾病的发生。为明确SH2D4A在细胞信号转导通路中的作用机制,本研究运用酵母双杂交技术筛选SH2D4A相互作用蛋白,并利用GST pull-down实验进行了初步鉴定。首先成功构建了酵母诱饵蛋白重组表达载体pGBKT7-SH2D4A;利用该重组体对人肾脏cDNA文库进行逐级筛选,共得到46个阳性克隆;经目的基因分离,DNA测序及BLAST软件序列比对分析发现5种可能的SH2D4A互作蛋白(AZGP1、DAD1、HSD17B10、KAT5和PKM2);NetPhos 2.0 Server软件预测结果显示除HSD17B10外其他4种蛋白均含有磷酸化酪氨酸;进一步以KAT5和HSD17B10作为代表进行GST pull-down,证实两者均可直接结合SH2D4A。以上结果为深入研究SH2D4A的功能奠定了基础。  相似文献   

5.
BACKGROUND: The cytoplasmic C. elegans protein MIG-10 affects cell migrations and is related to mammalian proteins that bind phospholipids and Ena/VASP actin regulators. In cultured cells, mammalian MIG-10 promotes lamellipodial growth and Ena/VASP proteins induce filopodia. RESULTS: We show here that during neuronal development, mig-10 and the C. elegans Ena/VASP homolog unc-34 cooperate to guide axons toward UNC-6 (netrin) and away from SLT-1 (Slit). The single mutants have relatively mild phenotypes, but mig-10; unc-34 double mutants arrest early in development with severe axon guidance defects. In axons that are guided toward ventral netrin, unc-34 is required for the formation of filopodia and mig-10 increases the number of filopodia. In unc-34 mutants, developing axons that lack filopodia are still guided to netrin through lamellipodial growth. In addition to its role in axon guidance, mig-10 stimulates netrin-dependent axon outgrowth in a process that requires the age-1 phosphoinositide-3 lipid kinase but not unc-34. CONCLUSIONS: mig-10 and unc-34 organize intracellular responses to both attractive and repulsive axon guidance cues. mig-10 and age-1 lipid signaling promote axon outgrowth; unc-34 and to a lesser extent mig-10 promote filopodia formation. Surprisingly, filopodia are largely dispensable for accurate axon guidance.  相似文献   

6.
Nervous system morphogenesis is characterized by extensive interactions between individual axon growth cones and their cellular environments. Selective cell adhesion is one mechanism by which the growth of an axon can be modulated, and members of the classic cadherin group of cell adhesion molecules have been shown to play a role in this process in both vertebrates and Drosophila. In Drosophila, there are two classic cadherins: one involved primarily in regulating the morphogenesis of epithelia, and the other, DN-cadherin, required almost exclusively in neuronal development. In contrast, C. elegans has a single classic cadherin gene, hmr-1, whose function is required for epithelial morphogenesis. We show here that hmr-1 also encodes a second classic cadherin via a novel mechanism involving an alternative, neuron-specific promoter, coupled with alternative splicing. This novel HMR-1 isoform is very similar to DN-cadherin, and a mutant strain that specifically lacks the function of this isoform displays defects in the fasciculation and outgrowth of a subset of motor neuron processes; a phenotype that resembles loss of DN-cadherin function in Drosophila. These results indicate that Drosophila and C. elegans share a conserved, cadherin-dependent mechanism involved in regulating axonal patterning and fasciculation.  相似文献   

7.
Ruk/CIN85/SETA/CD2BP3 and CD2AP/CMS/METS-1 comprise a new family of proteins involved in such fundamental processes as clustering of receptors and rearrangement of the cytoskeleton in regions of specialised cell-cell contacts, ligand-activated internalisation and targeting to lysosome degradation pathway of receptor tyrosine kinases, and apoptotic cell death. As typical adapter proteins they execute these functions by interacting with other signalling molecules via multiple protein-protein interaction interfaces: SH3 domains, Pro-rich region and coiled-coil domain. It has been previously demonstrated that Ruk is able to interact with the p85alpha regulatory subunit of PI 3-kinase and that the SH3 domain of p85alpha is required for this interaction. However, later observations hinted at a more complex mechanism than simple one-way SH3-Pro-rich interaction. Because interaction with p85alpha was suggested to be important for pro-apoptotic activity of the long isoform of Ruk, Ruk(l)/CIN85, we carried out detailed studies of the mechanism of this interaction and demonstrated that multiple domains are involved; SH3 domains of Ruk are required and sufficient for efficient interaction with full-length p85alpha but the SH3 domain of p85alpha is vital for their "activation" by ousting them from intramolecular interaction with the Pro-rich region of Ruk. Our data also suggest that homodimerisation via C-terminal coiled-coil domain affects both intra- and intermolecular interactions of Ruk proteins.  相似文献   

8.
Over half of the neurons in Caenorhabditis elegans send axons to the nerve ring, a large neuropil in the head of the animal. Genetic screens in animals that express the green fluorescent protein in a subset of sensory neurons identified eight new sax genes that affect the morphology of nerve ring axons. sax-3/robo mutations disrupt axon guidance in the nerve ring, while sax-5, sax-9 and unc-44 disrupt both axon guidance and axon extension. Axon extension and guidance proceed normally in sax-1, sax-2, sax-6, sax-7 and sax-8 mutants, but these animals exhibit later defects in the maintenance of nerve ring structure. The functions of existing guidance genes in nerve ring development were also examined, revealing that SAX-3/Robo acts in parallel to the VAB-1/Eph receptor and the UNC-6/netrin, UNC-40/DCC guidance systems for ventral guidance of axons in the amphid commissure, a major route of axon entry into the nerve ring. In addition, SAX-3/Robo and the VAB-1/Eph receptor both function to prevent aberrant axon crossing at the ventral midline. Together, these genes define pathways required for axon growth, guidance and maintenance during nervous system development.  相似文献   

9.
The migration of cells and growth cones is a process that is guided by extracellular cues and requires the controlled remodeling of the extracellular matrix along the migratory path. The ADAM proteins are important regulators of cellular adhesion and recognition because they can combine regulated proteolysis with modulation of cell adhesion. We report that the C. elegans gene unc-71 encodes a unique ADAM with an inactive metalloprotease domain. Loss-of-function mutations in unc-71 cause distinct defects in motor axon guidance and sex myoblast migration. Many unc-71 mutations affect the disintegrin and the cysteine-rich domains, supporting a major function of unc-71 in cell adhesion. UNC-71 appears to be expressed in a selected set of cells. Genetic mosaic analysis and tissue-specific expression studies indicate that unc-71 acts in a cell non-autonomous manner for both motor axon guidance and sex myoblast migration. Finally, double mutant analysis of unc-71 with other axon guidance signaling molecules suggests that UNC-71 probably functions in a combinatorial manner with integrins and UNC-6/netrin to provide distinct axon guidance cues at specific choice points for motoneurons.  相似文献   

10.
CD2 associated protein (CD2AP) is an adaptor protein that plays an important role in cell to cell union needed for the kidney function. CD2AP interacts, as an adaptor protein, with different natural targets, such as CD2, nefrin, c-Cbl and podocin. These proteins are believed to interact to one of the three SH3 domains that are positioned in the N-terminal region of CD2AP. To understand the network of interactions between the natural targets and the three SH3 domains (SH3-A, B and C), we have started to determine the structures of the individual SH3 domains. Here we present the high-resolution structure of the SH3-C domain derived from NMR data. Full backbone and side-chain assignments were obtained from triple-resonance spectra. The structure was determined from distance restraints derived from high-resolution 600 and 800 MHz NOESY spectra, together with phi and psi torsion angle restraints based on the analysis of 1HN, 15N, 1Hα, 13Cα, 13CO and 13Cβ chemical shifts. Structures were calculated using CYANA and refined in water using RECOORD. The three-dimensional structure of CD2AP SH3-C contains all the features that are typically found in other SH3 domains, including the general binding site for the recognition of polyproline sequences.  相似文献   

11.
Type XVIII collagen is a homotrimeric basement membrane molecule of unknown function, whose COOH-terminal NC1 domain contains endostatin (ES), a potent antiangiogenic agent. The Caenorhabditis elegans collagen XVIII homologue, cle-1, encodes three developmentally regulated protein isoforms expressed predominantly in neurons. The CLE-1 protein is found in low amounts in all basement membranes but accumulates at high levels in the nervous system. Deletion of the cle-1 NC1 domain results in viable fertile animals that display multiple cell migration and axon guidance defects. Particular defects can be rescued by ectopic expression of the NC1 domain, which is shown to be capable of forming trimers. In contrast, expression of monomeric ES does not rescue but dominantly causes cell and axon migration defects that phenocopy the NC1 deletion, suggesting that ES inhibits the promigratory activity of the NC1 domain. These results indicate that the cle-1 NC1/ES domain regulates cell and axon migrations in C. elegans.  相似文献   

12.
13.
The semaphorin family comprises secreted and transmembrane proteins involved in axon guidance and cell migration. We have isolated and characterized deletion mutants of C. elegans semaphorin 1a (Ce-sema-1a or smp-1) and semaphorin 1b (Ce-sema-1b or smp-2) genes. Both mutants exhibit defects in epidermal functions. For example, the R1.a-derived ray precursor cells frequently fail to change anterior/posterior positions completely relative to their sister tail lateral epidermal precursor cell R1.p, causing ray 1 to be formed anterior to its normal position next to ray 2. The ray cells, which normally separate from the lateral tail seam cell (SET) at the end of L4 stage, remains connected to the SET cell even in adult mutant males. The ray 1 defects are partially penetrant in each single Ce-sema-1 mutant at 20 degrees C, but are greatly enhanced in Ce-sema-1 double mutants, suggesting that Ce-Sema-1a and Ce-Sema-1b function in parallel to regulate ray 1 position. Both mutants also have defects in other aspects of epidermal functions, including head and tail epidermal morphogenesis and touch cell axon migration, whereas, smp-1 mutants alone have defects in defecation and brood size. A feature of smp-1 mutants that is shared with mutants of mab-20 (which encodes Sema-2a) is the abnormal perdurance of contacts between epidermal cells.  相似文献   

14.
Huang X  Cheng HJ  Tessier-Lavigne M  Jin Y 《Neuron》2002,34(4):563-576
The netrin UNC-6 repels motor axons by activating the UNC-5 receptor alone or in combination with the UNC-40/DCC receptor. In a genetic screen for C. elegans mutants exhibiting partial defects in motor axon projections, we isolated the max-1 gene (required for motor neuron axon guidance). max-1 loss-of-function mutations cause fully penetrant but variable axon guidance defects. Mutations in unc-5 and unc-6, but not in unc-40, dominantly enhance the mutant phenotypes of max-1, whereas overexpression of unc-5 or unc-6, but not of unc-40, bypasses the requirement for max-1. MAX-1 proteins contain PH, MyTH4, and FERM domains and appear to be localized to neuronal processes. Human MAX-1 and UNC5H2 colocalize in discrete subcellular regions of transfected cells. Our results suggest a possible role for MAX-1 in netrin-induced axon repulsion by modulating the UNC-5 receptor signaling pathway.  相似文献   

15.
In 1990, the discovery of three Caenorhabditis elegans genes (unc5, unc6, unc40) involved in pioneer axon guidance and cell migration marked a significant advancement in neuroscience research [Hedgecock EM, Culotti JG, Hall DH. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 1990;4:61-85]. The importance of this molecular guidance system was exemplified in 1994, when the vertebrate orthologue of Unc6, Netrin-1, was discovered to be a key guidance cue for commissural axons projecting toward the ventral midline in the rodent embryonic spinal cord [Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 1994;78:409-424]. Since then, Netrin-1 has been found to be a critical component of embryonic development with functions in axon guidance, cell migration, morphogenesis and angiogenesis. Netrin-1 also plays a role in the adult brain, suggesting that manipulating netrin signals may have novel therapeutic applications.  相似文献   

16.
17.
The role of calmodulin (CaM) during mating in Saccharomyces cerevisiae was examined by using a set of Phe-to-Ala substitutions. We identified ten CaM mutants that exhibited significantly reduced mating efficiencies when crossed to a strain of the opposite mating type harboring the same CaM mutation. Most of the mating-defective CaM mutants were bilateral, i.e., they also exhibited mating defects, albeit minor ones, when crossed to the wild type. When strains carrying different bilateral CaM mutations were mated, the mating efficiencies recovered dramatically. We termed this phenomenon "intragenic mating complementation", and classified the mating-defective CaM mutations into two intragenic mating complementation groups. Two mutant alleles belonging to different groups showed minor defects in cell adhesion and cell fusion, but exhibited severe defects in karyogamy. CaM is known to bind to the essential spindle pole body component Nuf1p. This binding appears to be important for karyogamy because the nuf1 C911R mutation, which impairs CaM-Nuf1p binding, resulted in a severe defect in karyogamy. Indeed, the two mating-defective CaM mutations were found to compromise formation of the CaM/Nuf1p complex, and the mating defects of these two CaM mutants were suppressible by a dominant, CaM-independent, mutation in NUF1. Taken together, these results suggest that loss of CaM binding to Nuf1p causes a defect in karyogamy, thereby inhibiting productive mating.Communicated by C. P. Hollenberg  相似文献   

18.
19.
Members of the Cas family of Src homology 3 (SH3)-domain-containing cytosolic signaling proteins are crucial regulators of actin cytoskeletal dynamics in non-neuronal cells; however, their neuronal functions are poorly understood. Here, we identify a Drosophila Cas (DCas), find that Cas proteins are highly expressed in neurons and show that DCas is required for correct axon guidance during development. Functional analyses reveal that Cas specifies axon guidance by regulating the degree of fasciculation among axons. These guidance defects are similar to those observed in integrin mutants, and genetic analysis shows that integrins function together with Cas to facilitate axonal defasciculation. These results strongly support Cas proteins working together with integrins in vivo to direct axon guidance events.  相似文献   

20.
近年来越来越多研究表明,雄性产生精子(精液)也需付出代价。在多次交配的动物中,雄性为获得最大生殖潜力,必须依据配偶的质量策略性地调整每次交配的生殖投入。雄性策略性的生殖投入主要体现在两个方面,一是精子竞争(sperm competition),二是柯立芝效应(Coolidge effect)。目前精子竞争研究主要集中于昆虫类群,而柯立芝效应研究集中于高等脊椎动物,同时验证结果也时常与假说不一致。以多次交配的三突伊氏蛛为材料,以雄蛛交配行为为指标,在蜘蛛类群中探讨和验证雄性精子竞争强度假说和柯立芝效应。设定3个交配组合:2只雄蛛依次与1只雌蛛各交配1次(A组)、2只雄蛛依次与2只雌蛛各交配1次(B组)和1只雄蛛与1只雌蛛交配2次(C组),分析比较3个交配组合的三突伊氏蛛第1次交配和第2次交配在交配潜伏期、交配持续时间和交配回合数方面的差异,比较三突伊氏蛛雌蛛不同交配史对雄蛛交配行为的影响,以此验证雄性精子竞争强度假说和柯立芝效应。研究结果表明A和B组的三突伊氏蛛第2次交配的交配潜伏期和交配持续时间显著长于第1次交配。同时,C组的三突伊氏蛛第1次交配的交配潜伏期和交配持续时间与第2次交配都没有显著差异。同时,A、B和C组的三突伊氏蛛第1次交配的交配回合数与第2次交配都没有显著差异。研究结果支持精子竞争强度假说,而不支持柯立芝效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号