首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A position effect on the time of replication origin activation in yeast.   总被引:40,自引:0,他引:40  
B M Ferguson  W L Fangman 《Cell》1992,68(2):333-339
The chromosomes of eukaryotes are characterized by the mosaic nature of their replication--large regions of DNA that replicate early in S phase are interspersed with regions that replicate late. This pattern of early and late synthesis appears to be the consequence of a temporal program that activates replication origins at different times. The basis of this temporal regulation in the yeast S. cerevisiae has been investigated by changing the chromosomal locations of two origins, one activated early in the S phase (ARS1) and one activated late (ARS501). We show that the cis-acting information controlling time of activation can be separated from the element that determines origin function. For the ARS501 origin, late activation appears to be a consequence of its proximity to the telomere.  相似文献   

2.
ARS replication during the yeast S phase   总被引:43,自引:0,他引:43  
A 1.45 kb circular plasmid derived from yeast chromosome IV contains the autonomous replication element called ARS1. Isotope density transfer experiments show that each plasmid molecule replicates once each S phase, with initiation depending on two genetically defined steps required for nuclear DNA replication. A density transfer experiment with synchronized cells demonstrates that the ARS1 plasmid population replicates early in the S phase. The sequences adjacent to ARS1 on chromosome IV also initiate replication early, suggesting that the ARS1 plasmid contains information which determines its time of replication. The times of replication for two other yeast chromosome sequences, ARS2 and a sequence referred to as 1OZ, indicate that the temporal order of replication is ARS1 leads to ARS2 leads to 1OZ. These experiments show directly that specific chromosome regions replicate at specific times during the yeast S phase. If ARS elements are origins of chromosome replication, then the experiment reveals times of activation for two origins.  相似文献   

3.
4.
C Yang  J F Theis  C S Newlon 《Genetics》1999,152(3):933-941
DNA replication origins, specified by ARS elements in Saccharomyces cerevisiae, play an essential role in the stable transmission of chromosomes. Little is known about the evolution of ARS elements. We have isolated and characterized ARS elements from a chromosome III recovered from an alloploid Carlsberg brewing yeast that has diverged from its S. cerevisiae homeologue. The positions of seven ARS elements identified in this S. carlsbergensis chromosome are conserved: they are located in intergenic regions flanked by open reading frames homologous to those that flank seven ARS elements of the S. cerevisiae chromosome. The S. carlsbergensis ARS elements were active both in S. cerevisiae and S. monacensis, which has been proposed to be the source of the diverged genome present in brewing yeast. Moreover, their function as chromosomal replication origins correlated strongly with the activity of S. cerevisiae ARS elements, demonstrating the conservation of ARS activity and replication origin function in these two species.  相似文献   

5.
6.
Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.  相似文献   

7.
The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.  相似文献   

8.
DNA replication in eukaryotes initiates from discrete genomic regions, termed origins, according to a strict and often tissue-specific temporal program. However, the genetic program that controls activation of replication origins has still not been fully elucidated in mammalian cells. Previously, we measured replication timing at the sequence level along human chromosomes 11q and 21q. In the present study, we sought to obtain a greater understanding of the relationship between replication timing programs and human chromosomes by analysis of the timing of replication of a single human chromosome 11 that had been transferred into the Chinese hamster ovary (CHO) cell line by chromosome engineering. Timing of replication was compared for three 11q chromosomal regions in the transformed CHO cell line (CHO(h11)) and the original human fibroblast cell line, namely, the R/G-band boundary at 11q13.5/q14.1, the centromere and the distal telomere. We found that the pattern of replication timing in and around the R/G band boundary at 11q13.5/q14.1 was similar in CHO(h11) cells and fibroblasts. The 11q centromeric region, which replicates late in human fibroblasts, replicated in the second half of S phase in CHO(h11) cells. By contrast, however, the telomeric region at 11q25, which is late replicating in fibroblasts (and in several other human cell lines), replicated in the first half of S phase or in very early S phase in CHO(h11) cells. Our observations suggest that the replication timing programs of the R/G-band boundary and the centromeric region of human chromosome 11q are maintained in CHO(h11) cells, whereas that for the telomeric region is altered. The replication timing program of telomeric regions on human chromosomes might be regulated by specific mechanisms that differ from those for other chromosomal regions.  相似文献   

9.
Time of replication of ARS elements along yeast chromosome III.   总被引:33,自引:16,他引:17       下载免费PDF全文
The replication of putative replication origins (ARS elements) was examined for 200 kilobases of chromosome III of Saccharomyces cerevisiae. By using synchronous cultures and transfers from dense to light isotope medium, the temporal pattern of mitotic DNA replication of eight fragments that contain ARSs was determined. ARS elements near the telomeres replicated late in S phase, while internal ARS elements replicated in the first half of S phase. The results suggest that some ARS elements in the chromosome may be inactive as replication origins. The actively expressed mating type locus, MAT, replicated early in S phase, while the silent cassettes, HML and HMR, replicated late. Unexpectedly, chromosome III sequences were found to replicate late in G1 at the arrest induced by the temperature-sensitive cdc7 allele.  相似文献   

10.
11.
Replication of DNA within Saccharomyces cerevisiae chromosomes is initiated from multiple origins, whose activation follow their own inherent time schedules during the S phase of the cell cycle. It has been demonstrated that a characteristic replicative complex (RC) that includes an origin recognition complex is formed at each origin and shifts between post- and pre-replicative states during the cell cycle. We wanted to determine whether there was an association between this shift in the state of the RC and firing events at replication origins. Time course analyses of RC architecture using UV-footprinting with synchronously growing cells revealed that pre-replicative states at both early and late firing origins appeared simultaneously during late M phase, remained in this state during G(1) phase, and converted to the post-replicative state at various times during S phase. Because the conversion of the origin footprinting profiles and origin firing, as assessed by two-dimensional gel electrophoresis, occurred concomitantly at each origin, then these two events must be closely related. However, conversion of the late firing origin occurred without actual firing. This was observed when the late origin was suppressed in clb5-deficient cells and a replication fork originating from an outside origin replicated the late origin passively. This mechanism ensures that replication at each chromosomal locus occurs only once per cell cycle by shifting existing pre-RCs to the post-RC state, when it is replicated without firing.  相似文献   

12.
Regulation of replication timing in fission yeast.   总被引:4,自引:0,他引:4  
S M Kim  J A Huberman 《The EMBO journal》2001,20(21):6115-6126
Here we report the first characterization of replication timing and its regulation in the fission yeast Schizosaccharomyces pombe. We used three different synchronization methods: centrifugal elutriation, cdc10 temperature-shift and release, and starvation for deoxyribonucleoside triphosphates (dNTPs) by treatment with hydroxyurea (HU) followed by removal of HU, to study the times when specific autonomously replicating sequence elements (ARS elements; potential replication origins) replicate during S phase. We found that individual ARS elements replicate at characteristic times, some early and some late, independently of synchronization method. In wild-type cells treated with HU, early ARS elements replicated but late ones did not. However, in HU-treated mutant cells lacking the Rad3 (similar to human ATR and ATM) or Cds1 (similar to human CHK2) checkpoint kinase, both early and late ARS elements were able to replicate. Thus under conditions of dNTP starvation the Rad3 and Cds1 kinases are needed to suppress the replication of normally late-replicating regions.  相似文献   

13.
The chromosomes of an established cell line of Dipodomys panamintinus have been characterised in terms of their C, G and Q banding patterns, and the distributions of silver grains in autoradiographs of chromosomes labelled in early or late S phase. No relationship could be established between C, G or Q banding regions of chromosomes and a particular S phase time of replication of the DNA in these banded regions. The implication of this result to the concept of heterochromatin is discussed.  相似文献   

14.
Yeast artificial chromosomes (YACs) are a common tool for cloning eukaryotic DNA. The manner by which large pieces of foreign DNA are assimilated by yeast cells into a functional chromosome is poorly understood, as is the reason why some of them are stably maintained and some are not. We examined the replication of a stable YAC containing a 240-kb insert of DNA from the human T-cell receptor beta locus. The human insert contains multiple sites that serve as origins of replication. The activity of these origins appears to require the yeast ARS consensus sequence and, as with yeast origins, additional flanking sequences. In addition, the origins in the human insert exhibit a spacing, a range of activation efficiencies, and a variation in times of activation during S phase similar to those found for normal yeast chromosomes. We propose that an appropriate combination of replication origin density, activation times, and initiation efficiencies is necessary for the successful maintenance of YAC inserts.  相似文献   

15.
The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.  相似文献   

16.
17.
In order to understand the mechanisms leading to the complete duplication of linear eukaryotic chromosomes, the temporal order of the events involved in replication of a 7.5-kb Saccharomyces cerevisiae linear plasmid called YLpFAT10 was determined. Two-dimensional agarose gel electrophoresis was used to map the position of the replication origin and the direction of replication fork movement through the plasmid. Replication began near the center of YLpFAT10 at the site in the 2 microns sequences that corresponds to the 2 microns origin of DNA replication. Replication forks proceeded bidirectionally from the origin to the ends of YLpFAT10. Thus, yeast telomeres do not themselves act as origins of DNA replication. The time of origin utilization on YLpFAT10 and on circular 2 microns DNA in the same cells was determined both by two-dimensional gel electrophoresis and by density transfer experiments. As expected, 2 microns DNA replicated in early S phase. However, replication of YLpFAT10 occurred in late S phase. Thus, the time of activation of the 2 microns origin depended upon its physical context. Density transfer experiments established that the acquisition of telomeric TG1-3 single-strand tails, a predicted intermediate in telomere replication, occurred immediately after the replication forks approached the ends of YLpFAT10. Thus, telomere replication may be the very last step in S phase.  相似文献   

18.
Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.  相似文献   

19.
ARS301 and ARS302 are inactive replication origins located at the left end of budding yeast (Saccharomyces cerevisiae) chromosome III, where they are associated with the HML-E and -I silencers of the HML mating type cassette. Although they function as replication origins in plasmids, they do not serve as origins in their normal chromosomal locations, because they are programmed to fire so late in S phase that they are passively replicated by the replication fork from neighboring early-firing ARS305 before they have a chance to fire on their own. We asked whether the nucleotide sequences required for plasmid origin function of these silencer-associated chromosomally inactive origins differ from the sequences needed for plasmid origin function by nonsilencer-associated chromosomally active origins. We could not detect consistent differences in sequence requirements for the two types of origins. Next, we asked whether sequences within or flanking these origins are responsible for their chromosomal inactivity. Our results demonstrate that both flanking and internal sequences contribute to chromosomal inactivity, presumably by programming these origins to fire late in S phase. In ARS301, the function of the internal sequences determining chromosomal inactivity is dependent on the checkpoint proteins Mec1p and Rad53p.  相似文献   

20.
Molina WF  Galetti PM 《Genetica》2007,130(2):153-160
There are few examples of differentiated sex chromosomes in fishes. In the genus Leporinus, seven species present a highly differentiated ZW system, derived from heterochromatinization process. Cytogenetic analyses carried out in three of these fish species, Leporinus obtusidens, L. elongatus and L. reinhardti, through RBG-banding, showed late replication bands, coincident with heterochromatic regions in both Z and W chromosomes. A similar interstitial early replication segment was observed in the complex heterochromatic region along the Wq arms in the three species, which might correspond to a pseudoautosomal segment (SD, sex determining locus). Asynchrony related to the replication pattern among different Z chromosomes was not observed. When the identification of nuclear organizer regions by silver nitrate was performed over chromosomal preparations previously exposed to 5-bromo-2′-deoxyuridine (BrdU), remarkable positive signals at interstitial and telomeric position were observed on the q arms of W chromosomes in the species L. elongatus and L. reinhardti. The absence of 18S ribosomal RNA gene loci in this region, formerly demonstrated by FISH, indicates that this argentophilic behavior is putatively due to heterochromatin decondensation caused by BrdU incorporation, favoring such Ag+ reaction. Early and late replication bands were also observed in the heterochromatic portions of Z and W chromosomes, indicating that euchromatic and heterochromatic regions are interspersed. The present data suggest a significant level of heterochromatic complexity in the sex chromosomes of each species. On the other hand, the replication pattern shared by them supports a monophyletic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号