首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, parathyroid hormone (PTH) was shown to support survival of progenitor cells in bone marrow. The release of progenitor cells occurs in physiological and pathological conditions and was shown to contribute to neovascularization in tumors and ischemic tissues. In the present study we sought to investigate prospectively the effect of primary hyperparathyroidism (PHPT) on mobilization of bone marrow-derived progenitor cells. In 22 patients with PHPT and 10 controls, defined subpopulations of circulating bone marrow-derived progenitor cells (BMCs) were analyzed by flow cytometry (CD45(+)/CD34(+)/CD31(+) cells indicating endothelial progenitor cells, CD45(+)/CD34(+)/c-kit(+) cells indicating hematopoietic stem cells, and CD45(+)/CD34(+)/CXCR4(+) cells indicating progenitor cells with the homing receptor CXCR4). Cytokine serum levels (SCF, SDF-1, VEGF, EPO, and G-CSF) were assessed using ELISA. Levels of PTH and thyroid hormone as well as serum electrolytes, renal and liver parameters, and blood count were analyzed. Our data show for the first time a significant increase of circulating BMCs and an upregulation of SDF-1 and VEGF serum levels in patients with PHPT. The number of circulating BMCs returned to control levels measured 16.7 +/- 2.3 mo after surgery. There was a positive correlation of PTH levels with the number of CD45(+)/CD34(+)/CD31(+), CD45(+)/CD34(+)/c-kit(+), and CD45(+)/CD34(+)/CXCR4(+) cells. However, there was no correlation between cytokine serum concentrations (SDF-1, VEGF) and circulating BMCs. Serum levels of G-CSF, EPO, and SCF known to mobilize BMCs were even decreased or remained unchanged, suggesting a direct effect of PTH on stem cell mobilization. Our data suggest a new function of PTH mobilizing BMCs into peripheral blood.  相似文献   

2.
It was reported that human hematopoietic stem cells in bone marrow were restricted to the CD34(+)KDR(+) cell fraction. We found that expression levels of Flk-1, a mouse homologue of KDR, were low or undetectable in mouse Lin(-)c-Kit(+)Sca-1(+)CD34(low/-) cells as well as Hoechst33342(-) cells (side population), which have long-term reconstitution capacity. Furthermore, neither Flk-1(+)CD34(low/-) cells nor Flk-1(+)CD34(+) cells had long-term reconstitution capacity in mouse. Taken together with other observations using Flk-1-deficient mice, these results indicate that Flk-1 is essential for the development of hematopoietic stem cells in embryo but not for the function of hematopoietic stem cells in adult mouse bone marrow.  相似文献   

3.
BACKGROUND: CD133 is a newly developed hematopoietic stem cell marker but little is known about its function. Whether CD133(+) cell selection provides any advantage over CD34(+) selection for hematopoietic stem cell isolation and transplantation is unclear. The present study compared colony formation and endothelial cell differentiation of these two cell types from umbilical cord blood (UCB). METHODS: Mononuclear cells from the same UCB samples were used for both CD133(+) and CD34(+) cell selection. Cells with 97.1% purity were incubated in semi-solid culture medium containing stem cell growth factor (SCGF) and G-CSF or erythropoietin (EPO). Purified cells were also cultured in M199 containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1). RESULTS: CD34(+) and CD133(+) cells produced similar numbers of CFU-GM colonies (median 43.25 and 30.5, respectively; P>0.2). However, a greater than four-fold difference in BFU-E colony formation was observed from CD34(+) cells compared with CD133(+) cells (median 35 and 8, respectively; P<0.04). CD34(+) cells gave rise to endothelial-like cells when stimulated with VEGF, bFGF and IGF-1. CD133(+) cells were unable produce this cell type under the same conditions. DISCUSSION: CD133(+) cells produced smaller BFU-E colonies and were unable to differentiate into mature endothelial cells. CD34(+) cells contained endothelial progenitors that could differentiate into mature cells of this lineage. Based on these data, it appears that CD133 offers no distinct advantage over CD34 as a selective marker for immunoaffinity-based isolation of hematopoietic stem cells and endothelial progenitor cells.  相似文献   

4.
5.
Endothelial nitric oxide synthase (eNOS) is essential for neovascularization. Here we show that the impaired neovascularization in mice lacking eNOS is related to a defect in progenitor cell mobilization. Mice deficient in eNOS (Nos3(-/-)) show reduced vascular endothelial growth factor (VEGF)-induced mobilization of endothelial progenitor cells (EPCs) and increased mortality after myelosuppression. Intravenous infusion of wild-type progenitor cells, but not bone marrow transplantation, rescued the defective neovascularization of Nos3(-/-) mice in a model of hind-limb ischemia, suggesting that progenitor mobilization from the bone marrow is impaired in Nos3(-/-) mice. Mechanistically, matrix metalloproteinase-9 (MMP-9), which is required for stem cell mobilization, was reduced in the bone marrow of Nos3(-/-) mice. These findings indicate that eNOS expressed by bone marrow stromal cells influences recruitment of stem and progenitor cells. This may contribute to impaired regeneration processes in ischemic heart disease patients, who are characterized by a reduced systemic NO bioactivity.  相似文献   

6.
The mechanism by which angiogenic factors recruit bone marrow (BM)-derived quiescent endothelial and hematopoietic stem cells (HSCs) is not known. Here, we report that functional vascular endothelial growth factor receptor-1 (VEGFR1) is expressed on human CD34(+) and mouse Lin(-)Sca-1(+)c-Kit(+) BM-repopulating stem cells, conveying signals for recruitment of HSCs and reconstitution of hematopoiesis. Inhibition of VEGFR1, but not VEGFR2, blocked HSC cell cycling, differentiation and hematopoietic recovery after BM suppression, resulting in the demise of the treated mice. Placental growth factor (PlGF), which signals through VEGFR1, restored early and late phases of hematopoiesis following BM suppression. PlGF enhanced early phases of BM recovery directly through rapid chemotaxis of VEGFR1(+) BM-repopulating and progenitor cells. The late phase of hematopoietic recovery was driven by PlGF-induced upregulation of matrix metalloproteinase-9, mediating the release of soluble Kit ligand. Thus, PlGF promotes recruitment of VEGFR1(+) HSCs from a quiescent to a proliferative BM microenvironment, favoring differentiation, mobilization and reconstitution of hematopoiesis.  相似文献   

7.
We hypothesized that exposure to hyperbaric oxygen (HBO(2)) would mobilize stem/progenitor cells from the bone marrow by a nitric oxide (*NO) -dependent mechanism. The population of CD34(+) cells in the peripheral circulation of humans doubled in response to a single exposure to 2.0 atmospheres absolute (ATA) O(2) for 2 h. Over a course of 20 treatments, circulating CD34(+) cells increased eightfold, although the overall circulating white cell count was not significantly increased. The number of colony-forming cells (CFCs) increased from 16 +/- 2 to 26 +/- 3 CFCs/100,000 monocytes plated. Elevations in CFCs were entirely due to the CD34(+) subpopulation, but increased cell growth only occurred in samples obtained immediately posttreatment. A high proportion of progeny cells express receptors for vascular endothelial growth factor-2 and for stromal-derived growth factor. In mice, HBO(2) increased circulating stem cell factor by 50%, increased the number of circulating cells expressing stem cell antigen-1 and CD34 by 3.4-fold, and doubled the number of CFCs. Bone marrow *NO concentration increased by 1,008 +/- 255 nM in association with HBO(2). Stem cell mobilization did not occur in knockout mice lacking genes for endothelial *NO synthase. Moreover, pretreatment of wild-type mice with a *NO synthase inhibitor prevented the HBO(2)-induced elevation in stem cell factor and circulating stem cells. We conclude that HBO(2) mobilizes stem/progenitor cells by stimulating *NO synthesis.  相似文献   

8.
In an effort to obtain defined culture conditions for ex vivo expansion of hematopoietic stem and progenitor cells which avoid the supplementation of serum, we cultured human CD34(+) hematopoietic progenitor cells in a chemically defined, serum-free medium in the presence of hematopoietic growth factors (HGFs), stem cell factor (SCF), interleukin (IL)-1beta, IL-3, IL-6, and erythropoietin (EPO). A medium, SFM-1, was prepared according to a protocol previously optimized for semisolid progenitor cell assays containing Iscove's Modified Dulbecco's Medium (IMDM) plus cholesterol, bovine serum albumin, transferrin, nucleotides and nucleosides, insulin, and beta-mercaptoethanol. In static cultures seeded with CD34(+)-enriched progenitor cells isolated from human peripheral blood, a mean 76.6-fold expansion of total nucleated cells and a mean 4.6-fold expansion of colony-forming cells (CFC) was recorded after 14 days. Morphological analysis of the expanded cells revealed formation of myeloid, erythroid, and megakaryocytic cells. Flow cytometric analysis indicated that CD34(+) antigen expressing cells were maintained to a limited degree only, and cell populations expressing surface markers for myeloid (CD33, CD14, and CD15) and megakaryocytic (CD41a) lineages predominated. Within SFM-1, bovine serum albumin (BSA), cholesterin, and transferrin represented the most critical components needed for efficient total cell and CFC expansion. Addition of autologous patient plasma (APP) or fetal calf serum (FCS) to SFM-1 resulted in inferior cell amplification and CFC formation compared to controls in SFM-1, indicating that the components used in SFM-1 could replace exogenous serum. Four commercially available serum-free media resulted in either comparable or lower total cell and CFC yields as SFM-1. The transplantation potential of CD34(+) cells after culture in SFM-1 was assayed using limiting dilution analysis on preformed irradiated bone marrow stroma and revealed maintenance of long-term bone marrow culture initiating cell (LTCIC) levels during the culture period. These data indicate that HGF-supported multilineage ex vivo expansion of human CD34(+) hematopoietic progenitor cells is feasible using an IMDM-based culture medium which contains a restricted number of additives, resulting in analogous or improved yields of both primitive and differentiated cells compared to previously established protocols. We suggest that this culture protocol is of advantage when working with pharmaceutical-grade preparations under serum-free conditions.  相似文献   

9.
Hematopoietic cancer stem cells preserve cellular hierarchy in a manner similar to normal stem cells, yet the underlying regulatory mechanisms are poorly understood. It is known that both normal and malignant stem/progenitor cells express CD34. Here, we demonstrate that several cell lines (HL-60, U266) derived from hematopoietic malignancies contain not only CD34(-) but also CD34(+) subpopulations. The CD34(+) cells displayed a stem/progenitor-like phenotype since, in contrast to CD34(-) cells, they frequently underwent cellular division and rapidly formed colonies in methylcellulose-based medium. Strikingly, a constant fraction of the CD34(+) and CD34(-) cell subpopulations, when separated, rapidly switched their phenotype. Consequently, both separated fractions could generate tumors in immunocompromised NOD/LtSz-scid/scid mice. Cultures in vitro showed that the proportion of CD34(+) stem/progenitor-like cells in the population was decreased by cell-cell contact and increased by soluble factors secreted by the cells. Using cytokine arrays, we identified some of these factors, notably thymopoietin that was able to increase the proportion of CD34(+) cells and overall colony-forming capacity in tested cell lines. This action of thymopoietin was conserved in mononuclear cells from bone marrow. Therefore, we propose that hematopoietic cancer cell lines containing subpopulations of CD34(+) cells can provide an in vitro model for studies of cancer stem/progenitor cells.  相似文献   

10.
Adult stem cells are critical for maintaining cellular homeostasis throughout life, yet the effects of age on their regenerative capacity are poorly understood. All lymphoid and myeloid blood cell lineages are continuously generated from hematopoietic stem cells present in human bone marrow. With age, significant changes in the function and composition of mature blood cells are observed. In this study, we report that age-related changes also occur in the human hematopoietic stem cell compartment. We find that the proportion of multipotent CD34(+) CD38(-) cells increases in the bone marrow of elderly (>70 years) individuals. CD34(+) CD38(+) CD90(-) CD45RA(+/-) CD10(-) and CD34(+) CD33(+) myeloid progenitors persist at the same level in the bone marrow, while the frequency of early CD34(+) CD38(+) CD90(-) CD45RA(+) CD10(+) and committed CD34(+) CD19(+) B-lymphoid progenitors decreases with age. In contrast to mice models of aging, transplantation experiments with immunodeficient NOD/SCID/IL-2Rγ null (NSG) mice showed that the frequency of NSG repopulating cells does not change significantly with age, and there is a decrease in myeloid lineage reconstitution. An age-related decrease in the capacity of CD34(+) cells to generate myeloid cells was also seen in colony-forming assays in vitro. Thus, with increasing age, human hematopoietic stem/progenitor cells undergo quantitative changes as well as functional modifications.  相似文献   

11.
12.
Two hypotheses explain the role of adult progenitor cells in myocardial regeneration. Stem cell plasticity which involves mobilization of stem cells from the bone marrow and other niches, homing to the area of tissue injury and transdifferentiation into functional cardiomyocytes. Alternative hypothesis is based on the observations that bone marrow harbors a heterogenous population of cells positive for CXCR4 - receptor for chemokine SDF-1. This population of non-hematopoietic cells expresses genes specific for early muscle, myocardial and endothelial progenitor cells (EPC). These tissue-committed stem cells circulate in the peripheral blood at low numbers and can be mobilized by hematopoietic cytokines in the setting of myocardial ischemia. Endothelial precursors capable of transforming into mature, functional endothelial cells are present in the pool of peripheral mononuclear cells in circulation. Their number significantly increases in acute myocardial infarction (AMI) with subsequent decrease after 1 month, as well as in patients with unstable angina in comparison to stable coronary heart disease (CHD). There are numerous physiological and pathological stimuli which influence the number of circulating EPC such as regular physical activity, medications (statins, PPAR-gamma agonists, estrogens), as well as numerous inflammatory and hematopoietic cytokines. Mobilization of stem cells in AMI involves not only the endothelial progenitors but also hematopoietic, non-hematopoietic stem cells and most probably the mesenchymal cells. In healthy subjects and patients with stable CHD, small number of circulating CD34+, CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cells can be detected. In patients with AMI, a significant increase in CD34+/CXCR4+, CD117+, c-met+ and CD34/CD117+ stem cell number the in peripheral blood was demonstrated with parallel increase in mRNA expression for early cardiac, muscle and endothelial markers in peripheral blood mononuclear cells. The maximum number of stem cells was found early in ST-segment elevation myocardial infarction (<12 hours) with subsequent decrease through the 7-day follow-up and with concomitant changes in the levels of cytokines involved in the inflammatory response and stem cell recruitment. Moreover, peak expression of cardiac muscle and endothelial markers occurred at the same time as the most significant increase in CD34/CXCR4+ stem cell number. The SDF-1/CXCR-4 axis seems particularly important in stem/muscle progenitor cell homing, chemotaxis, engraftment and retention in ischaemic myocardium. The significance of autologous stem cells mobilization in terms of cardiac salvage and regeneration needs to be proved in humans but it seems to be a reparative mechanism triggered early in the course of acute coronary syndromes.  相似文献   

13.
Nitric oxide (NO) was implicated in the regulation of mobilization and function of circulating angiogenic cells (CACs). The supposedly inert anion nitrate, abundant in vegetables, can be stepwise reduced in vivo to form nitrite, and consecutively NO, representing an alternative to endogenous NO formation by NO synthases. This study investigated whether inorganic dietary nitrate influences mobilization of CACs. In a randomized double-blind fashion, healthy volunteers ingested 150 ml water with 0.15 mmol/kg (12.7 mg/kg) of sodium nitrate, an amount corresponding to 100-300 g of a nitrate-rich vegetable, or water alone as control. Mobilization of CACs was determined by the number of CD34(+)/KDR(+) and CD133(+)/KDR(+) cells using flow cytometry and the mobilization markers stem cell factor (SCF) and stromal cell-derived factor-1a (SDF-1α) were determined in plasma via ELISA. Nitrite and nitrate were measured using high-performance liquid chromatography and reductive gas-phase chemiluminescence, respectively. NOS-dependent vasodilation was measured as flow-mediated vasodilation. Further mechanistic studies were performed in mice after intravenous application of nitrite together with an NO scavenger to identify the role of nitrite and NO in CAC mobilization. Nitrate ingestion led to a rise in plasma nitrite together with an acute increase in CD34(+)/KDR(+) and CD133(+)/KDR(+)-CACs along with increased NOS-dependent vasodilation. This was paralleled by an increase in SCF and SDF-1α and the maximal increase in plasma nitrite correlated with CD133(+)/KDR(+)-CACs (r=0.73, P=0.016). In mice, nitrate given per gavage and direct intravenous injection of nitrite led to CAC mobilization, which was abolished by the NO scavenger cPTIO, suggesting that nitrite mediated its effect via formation of NO. Dietary inorganic nitrate acutely mobilizes CACs via serial reduction to nitrite and NO. The nitrate-nitrite-NO pathway could offer a novel nutritional approach for regulation of vascular regenerative processes.  相似文献   

14.
A novel stem cell marker prominin-1 (CD133) has been shown to be expressed on a subpopulation of CD34(+) haematopoietic stem and progenitor cells. The aim of this study was to compare in parallel commercially available CD34(+) and CD133(+) isolation methods based on paramagnetic bead-coupled antibodies using clinical-grade samples of mobilized peripheral blood from 10 individual healthy donors under identical conditions. The CD133 negative fraction from the first selection was used for CD34(+) enrichment to obtain an additional CD34(+)/CD133(-) population. Although no significant difference in total cell expansion between cells isolated from the three procedures was observed in a 7-day cytokine-driven suspension culture, the long-term culture-initiating cell assay demonstrated that cells derived by CD34(+) isolation contain less primitive progenitors than those isolated based on CD133(+) selection. Interestingly, CD34(+)-enriched progenitors, especially the CD34(+)/CD133(-) fraction, contained a significantly higher proportion of erythroid colony-forming cells, whereas the highest content of myeloid colony-forming cells was concentrated in the CD133(+) selected cells. These subtle differences between CD34(+) and CD133(+) immunomagnetic selection will have to be explored for their potential clinical relevance.  相似文献   

15.
Advanced age is associated with decreased stem cell activity. However, the effect of aging on the differentiation capacity of induced pluripotent stem (iPS) cells into cardiovascular cells has not been fully clarified. We investigated whether iPS cells derived from young and old mice are equally capable of differentiating into vascular progenitor cells, and whether these cells regulate vascular responses in vivo. iPS cells from mouse embryonic fibroblasts (young) or 21 month-old mouse bone marrow (old) were used. Fetal liver kinase-1 positive (Flk-1(+)) cells, as a vascular progenitor marker, were induced after 3 to 4 days of culture from iPS cells derived from young and old mice. These Flk-1(+) cells were sorted and shown to differentiate into VE-cadherin(+) endothelial cells and α-SMA(+) smooth muscle cells. Tube-like formation was also successfully induced in both young and old murine Flk-1(+) cells. Next, hindlimb ischemia was surgically induced, and purified Flk-1(+) cells were directly injected into ischemic hindlimbs of nude mice. Revascularization of the ischemic hindlimb was significantly accelerated in mice transplanted with Flk-1(+) cells derived from iPS cells from either young or old mice, as compared to control mice as evaluated by laser Doppler blood flowmetry. The degree of revascularization was similar in the two groups of ischemic mice injected with iPS cell-derived Flk-1(+) cells from young or old mice. Transplantation of Flk-1(+) cells from both young and old murine iPS cells also increased the expression of VEGF, HGF and IGF mRNA in ischemic tissue as compared to controls. iPS cell-derived Flk-1(+) cells differentiated into vascular progenitor cells, and regulated angiogenic vascular responses both in vitro and in vivo. These properties of iPS cells derived from old mice are essentially the same as those of iPS cells from young mice, suggesting the functionality of generated iPS cells themselves to be unaffected by aging.  相似文献   

16.
17.
CD26/dipeptidylpeptidase IV (DPPIV) is a membrane-bound extracellular peptidase that cleaves dipeptides from the N terminus of polypeptide chains. The N terminus of chemokines is known to interact with the extracellular portion of chemokine receptors, and removal of these amino acids in many instances results in significant changes in functional activity. CD26/DPPIV has the ability to cleave the chemokine CXCL12/stromal cell-derived factor 1alpha (SDF-1alpha) at its position two proline. CXCL12/SDF-1alpha induces migration of hemopoietic stem and progenitor cells, and it is thought that CXCL12 plays a crucial role in homing/mobilization of these cells to/from the bone marrow. We found that CD26/DPPIV is expressed by a subpopulation of CD34(+) hemopoietic cells isolated from cord blood and that these cells have DPPIV activity. The involvement of CD26/DPPIV in CD34(+) hemopoietic stem and progenitor cell migration has not been previously examined. Functional studies show that the N-terminal-truncated CXCL12/SDF-1alpha lacks the ability to induce the migration of CD34(+) cord blood cells and acts to inhibit normal CXCL12/SDF-1alpha-induced migration. Finally, inhibiting the endogenous CD26/DPPIV activity on CD34(+) cells enhances the migratory response of these cells to CXCL12/SDF-1alpha. This process of CXCL12/SDF-1alpha cleavage by CD26/DPPIV on a subpopulation of CD34(+) cells may represent a novel regulatory mechanism in hemopoietic stem and progenitor cells for the migration, homing, and mobilization of these cells. Inhibition of the CD26/DPPIV peptidase activity may therefore represent an innovative approach to increasing homing and engraftment during cord blood transplantation.  相似文献   

18.
Sun B  Bai CX  Feng K  Li L  Zhao P  Pei XT 《生理学报》2000,52(2):143-146
To elucidate the effects of hypoxia on the proliferation and differentiation of CD34(+) hematopoietic stem/progenitor cells and their response to cytokines, the cells were isolated from umbilical cord blood by using a high-gradient magnetic cell sorting system (MACS). Mononuclear cells (MNC) and CD34(+) cells were incubated in severe hypoxia (1% oxygen) culture system, and the colony forming cells and antigen expression were studied by colony forming assays and FACS analysis. The results showed that incubation in severe hypoxia increased the number of erythroid bursts (BFU-E) (324.8+/-41.4/10(4) cells) generated from CD34(+) cells (191.2+/-34.5/10(4) cells in the control group, P<0.01). Severe hypoxia also enhanced the maintenance and cloning efficiency of BFU-E in a liquid culture system without growth factors, the number of BFU-E (152.4+/-22.6/10(4)cells) was much bigger than that in the control group (74.2+/-9.3/10(4) cells, P<0.01). In cultures incubated in hypoxia, the percentage of CD34(+) cells was significantly higher (2.5+/-1.2-fold, P<0.05) than in those incubated in air. BFU-E cloning efficiency of MNC was not significantly affected by hypoxia. The above results show that hypoxia enhances the maintenance of erythroid progenitor cells generated from CD34(+) hematopoietic stem/progenitor cells, no matter growth factors are present or not. These positive effects of hypoxia did not occur for the other progenitors.  相似文献   

19.
Transient lymphopenia is a hallmark of measles virus (MV)-induced immunosuppression. To address to what extent replenishment of the peripheral lymphocyte compartment from bone marrow (BM) progenitor/stem cells might be affected, we analyzed the interaction of wild-type MV with hematopoietic stem and progenitor cells (HS/PCs) and stroma cells in vitro. Infection of human CD34(+) HS/PCs or stroma cells with wild-type MV is highly inefficient yet noncytolytic. It occurs independently of CD150 in stroma cells but also in HS/PCs, where infection is established in CD34(+) CD150(-) and CD34(+) CD150(+) (in humans representing HS/PC oligopotent precursors) subsets. Stroma cells and HS/PCs can mutually transmit MV and may thereby create a possible niche for continuous viral exchange in the BM. Infected lymphocytes homing to this compartment may serve as sources for HS/PC or stroma cell infection, as reflected by highly efficient transmission of MV from both populations in cocultures with MV-infected B or T cells. Though MV exposure does not detectably affect the viability, expansion, and colony-forming activity of either CD150(+) or CD150(-) HS/PCs in vitro, it efficiently interferes with short- but not long-term hematopoietic reconstitution in NOD/SCID mice. Altogether, these findings support the hypothesis that MV accession of the BM compartment by infected lymphocytes may contribute to peripheral blood mononuclear cell lymphopenia at the level of BM suppression.  相似文献   

20.
Lineage analysis of the hemangioblast as defined by FLK1 and SCL expression   总被引:20,自引:0,他引:20  
Accumulating studies support the idea that a common progenitor, termed the hemangioblast, generates both hematopoietic and endothelial cell lineages. To better define the relationship between these cell lineages, we have generated knock-in embryonic stem (ES) cells carrying a non-functional human CD4 at the Scl locus. By using in vitro differentiated Scl(+/CD4) ES cells, we demonstrate that FLK1 and SCL are molecular determinants of the hemangioblast. Furthermore, our studies demonstrate that hematopoietic and endothelial cells develop via distinct, sequential generation of FLK1 and SCL-expressing cells. FLK1(+)CD4(-) cells first arise in developing embryoid bodies. The Scl gene is turned on within FLK1(+)CD4(-) cells to give rise to FLK1(+)CD4(+) cells. Alternatively, a subpopulation of the initial FLK1(+)CD4(-) cells remains as SCL negative. Within the FLK1(+)CD4(+) cells, FLK1 is down regulated to generate FILK1(-)CD4(+) cells. Replating studies demonstrate that hematopoietic progenitors are enriched within FLK1(+)CD4(+) and FLK1(-)CD4(+) cells, while endothelial cells develop from FLK1(+)CD4(+) and FLK1(+)CD4(-) cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号