首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
癫痫(Epilepsy)是一种常见的慢性神经系统疾病,长期反复发作会逐渐损害患者的认知功能并且导致多种共患疾病.癫痫发病机制复杂,其中谷氨酸代谢异常与癫痫发病关系密切.谷氨酸-谷氨酰胺循环是调节谷氨酸代谢的主要途径,谷氨酸转运体和星形胶质细胞在其中发挥重要作用.因此,本文主要探讨星形胶质细胞及谷氨酸转运体对癫痫的影响.  相似文献   

2.
目的研究在癫痫发病过程中,谷氨酸对AMPA受体Glu R2亚单位表达变化的影响。方法用RT-PCR和Western Blot方法观察谷氨酸诱导培养大鼠海马神经元AMPA受体Glu R2亚单位mRNA和蛋白的表达变化。结果在谷氨酸刺激后2h,8h,12h,培养海马神经元Glu R2mRNA和蛋白表达明显下降,与对照组相比,差异有显著性(P<0.05),而非NMDA受体拮抗剂CNQX能阻断此变化。结论在癫痫等疾病中,谷氨酸能通过激活AMAP/KA受体下调AMPA受体GluR2亚单位的表达,参与发病过程。  相似文献   

3.
代谢性谷氨酸受体及其在疼痛机制中的作用   总被引:1,自引:0,他引:1  
代谢性谷氨酸受体是一个新的G-蛋白相关受体家族,各类亚型在分子生物学特征、神经药理学特征和中枢神经系统分布方面有所不同。根据其序列的同源性程度可将其分为三组。近来的研究证实代谢性谷氨酸受体在痛信息传递机制中具有重要作用。本文将对代谢性谷氨酸受体在上述机制中的可能作用作一综述。  相似文献   

4.
代谢型谷氨酸受体在突触可塑性中的作用   总被引:2,自引:0,他引:2  
陈鹏  李金莲 《生命科学》2001,13(3):107-109,102
突触可塑性是近几年神经科学研究的热点之一,因为它对于理解神经系统的学习、学习和记忆、多咱神经疾病等许多过程有着重要的意义。除了离子型谷氨酸受体外,代谢型谷氨酸受体也参与了一些脑区中不同形式的突触可塑性变化。本文就代谢型谷氨酸受体选择性激动剂和拮抗剂对长时程增强和长时程抑制的作用进行了综述,以助于人们进一步理解突触可塑性的细胞和分子机制。  相似文献   

5.
谷氨酸下调培养海马神经元AMPA受体G1uR2亚单位的表达   总被引:1,自引:0,他引:1  
目的 研究在癫痫发病过程中,谷氨酸对AMPA受体G1uR2亚单位表达变化的影响。方法 用RT-PCR和Western Blot方法观察谷氨酸诱导培养大鼠海马神经元AMPA受体G1uR2亚单位mRNA和蛋白的表达变化。结果 在谷氨酸刺激后2h,8h,12h,培养海马神经元G1uR2 mRNA和蛋白表达明显下降,与对照组相比,差异有显著性(P〈0.05),而非NMDA受体拮抗剂CNQX能阻断此变化。结论 在癫痫等疾病中,谷氨酸能通过激活AMAP/KA受体下调AMPA受体G1uR2亚单位的表达,参与发病过程。  相似文献   

6.
代谢型谷氨酸受体激动引起星形神经胶质细胞肿胀   总被引:3,自引:0,他引:3  
用[~3H]-3-氧-甲基-D-葡萄糖摄取的方法测定细胞水含量,观察谷氨酸受体激动剂、拮抗剂对培养的星形神经胶质细胞水含量的影响,并观察细胞内、外钙的作用.结果发现:0.5,1,10 mmol/L的谷氨酸和1mmol/L的trans-ACPD(代谢型谷氨酸受体激动剂)1h均可以引起细胞的水含量增加,1mmol/L的 AMPA(离子型谷氨酸受体激动剂)不影响细胞的水含量,1mmol/L的L-AP3(代谢型谷氨酸受体拮抗剂)可以拮抗1mmol/L谷氨酸和trans-ACPD的作用;撤除细胞外液的钙,谷氨酸不再引起细胞的水含量增加, 20 μmol/ L 的 CdCl2不能减轻谷氨酸的作用,而300μmol/L的CdCl2及30μmol/L的胆罗啉(Dantrolene)均可以减轻谷氨酸的作用,提示代谢型谷氨酸受体激动引起星形细胞肿胀,细胞内、外Ca2+在谷氨酸引起的星形细胞肿胀中起一定的作用.  相似文献   

7.
谷氨酸是中枢神经系统中最重要的兴奋性神经递质,其受体分为离子型和代谢型,受体激活后通过对Na+、K+、Ca2+等阳离子调节或通过与G蛋白偶联,从而激活一系列信号转导途径,参与记忆形成。药物成瘾是一种慢性、复发性脑疾病,以强迫性药物寻求以及丧失对药物使用控制能力为主要特征。研究表明谷氨酸受体与药物成瘾的发生发展有关,就谷氨酸受体在药物成瘾中作用的研究做一综述。  相似文献   

8.
癫痫是慢性反复发作性的脑功能失调综合征,近年来,关于星形胶质细胞及腺苷和癫痫关系的研究逐渐成为热点。腺苷在中枢神经系统中广泛存在,其可以作为整合中枢兴奋性以及抑制性神经递质的调节因子,其诸多生理作用都是通过受体介导实现的。研究腺苷通过星形胶质细胞及腺苷激酶、谷氨酸、表观遗传基因修饰、伽马氨基丁酸受体等通路在抑制癫痫发病机制中的作用,将为治疗癫痫提供全新的治疗思路和措施。本文将针对腺苷抑制癫痫发生的机制以及目前与腺苷有关的癫痫治疗方法进行综述。如果在今后的研究工作中能够进一步明确腺苷在抑制癫痫中的作用机制,就有可能寻找新的干预靶点,对发展新的预防措施,指导预防药物研发,都具有重要意义。  相似文献   

9.
代谢型谷氨酸受体在突触可塑性中的作用研究进展   总被引:5,自引:0,他引:5  
突触可塑性是近 30年来神经科学领域的研究热点之一 ,它主要包括长时程增强 (long termpotentiation ,LTP)和长时程抑制 (long termdepression ,LTD)。以往的研究已经证实 ,离子型谷氨酸受体 (iGluRs)中的NMDA受体和AMPA受体 ,在LTP和LTD的诱导和维持中通过阳离子内流 ,引起细胞内的级联反应而起作用。新近的研究发现 ,代谢型谷氨酸受体 (mGluRs)与G蛋白偶联 ,通过细胞内的多种信使系统介导慢突触传递。本文主要就mGluRs在不同脑区LTP和LTD中的作用进行综述  相似文献   

10.
LGI1在中枢神经系统中具有多种生理和病理作用。LGI1可以调节神经胶质瘤的发生和发展,对大脑分层和小脑发育具有重要的调控作用,还能通过离子通道调节细胞兴奋性。LGI1可以结合细胞膜上的跨膜受体,改变神经递质谷氨酸的释放,并影响癫痫的发病过程。总体来说,LGI1在中枢神经系统中的作用机制仍有待阐明。该文将从介绍颞叶癫痫入手,简要综述LGI1在癫痫相关疾病中的最近进展,并讨论可行的治疗手段。  相似文献   

11.
代谢型谷氨酸受体   总被引:3,自引:0,他引:3  
魏东升  胡国渊 《生命科学》1997,9(1):6-10,14
代谢型谷氨酸受体(mGluRs)的发现是中枢兴奋性突触性研究中的一些重要进展,mGluRs激活后通过不同的胞内信号转导系统(如PI水解,cAMP水平变化等)产生生理效应,目前已有八种mGluRs亚基被克隆并成功表达,由于缺少选择性工具药,对其药理学特性及生理功能尚了解甚少,现有证据表明mGluRs在中枢神经系统的活动中起重要作用,包括调制离子通道活动神经元兴奋性和神经递质释放,参与突触传递和突触可  相似文献   

12.
突触前代谢型谷氨酸受体调节神经递质的释放   总被引:6,自引:0,他引:6  
谷氨酸通过激活离子型受体(iGluR)介导快速兴奋性突触传递,参与脑内几乎所有生理过程。谷氨酸过量释放可导致与脑缺血,缺氧及变性疾病有关的兴奋毒作用,最终引起神经元的死亡。代谢型谷氨酸受体(mGluRs)是一个与G-蛋白偶联的受体家族,分三型共八个亚型。其中Ⅱ和Ⅲ型mGluRs主要位于突触前,发挥对谷氨酸释放的负反馈调节。Ⅲ型mGluRs中的mGluR7位于谷氨酸能末梢突触前膜的活性区,发挥自身受体的作用,对正常情况下突触传递过程的谷氨酸释放进行负反馈调节;而属于Ⅱ型的mGluR2及属于Ⅲ型的mGluR4和mGluR8,则位于远离突有膜活性区的外突触区,因而正常突触传递过程中释放的谷氨酸量不能激活它们。只有在突触传递增强的情况下才被激活,抑制递质的释放。国外,mGluRs还分布在GABA能纤维末梢,通过突触前机制抑制GABA的释放。对突触前膜受体尤其是位于外突触区的mGluRs受体的研究,将有可能开发出理想的工具药,从而预防和阻止谷氨酸过量释放引起的神经毒及神经元的死亡。  相似文献   

13.
Wu D  Zhu PH 《生理科学进展》1998,29(4):349-351
脊椎动物视网膜双极细胞有ON型和OFF型两类:ON型双极细胞对光反应为去极化,OFF型双极细胞对光反应为超极化。现知,ON型双极细胞上含有代谢型谷氨酸受体,暗中光感受器细胞持续释放的谷所酸与之结合后,造成阳离子通道关闭,引起细胞超极化;光照时谷氨酸释放减少,引起去极化。而OFF型双极细胞上含有离子型谷氨酸受体,谷氨酸与之结合后受体本身通道打开,引起细胞去极化;光照时,谷氨酸释放减少,引起超极化。  相似文献   

14.
青光眼是第二大致盲性眼病,为不可逆致盲的最主要原因。视网膜神经节细胞损伤和死亡是青光眼所致视功能损害的根本原因。在青光眼视神经损伤的众多病理过程中,谷氨酸受体功能的改变是导致神经节细胞凋亡的重要因素。本研究组在大鼠慢性高眼压实验性青光眼模型上,围绕这一主题开展了一系列研究。研究结果表明,一方面,高眼压导致的众多信号变化通过直接调控谷氨酸的NMDA和AMPA受体功能参与神经节细胞的凋亡过程;另一方面,高眼压导致的细胞外谷氨酸集聚激活Müller细胞上的Ⅰ型代谢型谷氨酸受体(group Ⅰ metabotropic glutamate receptors,mGluRI),经下调细胞膜的Kir4.1钾通道引发Müller细胞的胶质化激活,进而导致神经节细胞的凋亡。结合这些结果,本文综述了有关谷氨酸受体在实验性青光眼视网膜细胞损伤中的作用及机制的若干研究进展。  相似文献   

15.
钙/钙调蛋白依赖的蛋白激酶Ⅱ(Ca2+/calmodulin-dependent protein kinase Ⅱ,CaMKⅡ)在脑内兴奋性突触部位丰富表达。通过催化谷氨酸受体和众多突触蛋白磷酸化,CaMKⅡ调节磷酸化蛋白在基础或细胞兴奋时的转运、分布和功能。谷氨酸NMDA受体是CaMKⅡ的直接底物,有证据表明CaMKⅡ直接与NMDA受体胞内C末端相互结合,催化一特定丝氨酸(S1303)的磷酸化。CaMKⅡ也加强谷氨酸AMPA受体的磷酸化,通过磷酸化AMPA受体C末端特定的丝氨酸(S831),CaMKⅡ增强AMPA受体的功能。此外,CaMKⅡ可与代谢型谷氨酸受体mGluR1亚型的胞内C末端结合,促进一特定苏氨酸(T871)的磷酸化,从而促进受体兴奋后脱敏。CaMKⅡ在正常状态下与mGluR5受体结合以储存于突触内,刺激mGluR5受体时,CaMKⅡ与mGluR5受体分离,转运至NMDA受体,以介导mGluR5信号对NMDA受体的增强作用。总之,CaMKⅡ与谷氨酸受体相互作用,改变受体磷酸化水平,参与受体的数量和功能以及突触传导活动的调节。  相似文献   

16.
日本京都大学的Shigetada Nakanishi研究小组克隆了大鼠NMDA受体蛋白的基因,而美国堪萨斯大学的Elias Michaelis则克隆了一种NMDA受体蛋白。NMDA受体是脑中的重要神经元膜蛋白,是谷氨酸受体中的关键因子。这两个小组的成功将使他人较易于检测用于控制NMDA受体、治疗与谷氨酸有关的疾病的药物。这类疾病包括退化性脑失常、中风、癫痫及记忆丧失。 Nakanishi及其同事在Nature杂志上详细描述了他们的工作。Michaelis则在最近一次神经科学学会议上介绍了自己的工作。自1989年12月以来,已克隆了12种不同的谷氨酸受体,其中,NMDA受体被认  相似文献   

17.
代谢型谷氨酸受体5(mGlu5)与神经元存活及脑肿瘤发生关系密切.近年发现,mGlu5在肝组织中有表达,并且在肝的病理过程中发挥重要的调节作用.而 mGlu5 是否在肝癌中起作用,目前尚未见报道.本研究选用代谢型谷氨酸受体特异性激动剂二羟基苯甘氨酸(dihydroxyphenylglycine,DHPG)处理肝癌细胞HepG2,从而探讨激活mGlu5对肝癌细胞生长的影响及其机制.结果显示,激活mGlu5能够促进HepG2细胞生长,并激活ERK/JNK通路,抑制p38通路,进而激活转录因子CREB/Elk1和NF-κB.本文揭示了MAPK通路可能参与mGlu5对肝癌细胞生长的调控,为临床提供以mGlu5作为药物靶位点的肝癌治疗新思路.  相似文献   

18.
刘金变  江伟  王莉 《生命科学》2008,20(2):279-282
谷氨酸是哺乳动物中枢神经系统重要兴奋性神经递质,参与学习、记忆、药物依赖成瘾及神经系统退行性疾病等多种病理生理过程。谷氨酸通过激活离子型(iGluRs)和代谢型谷氨酸受体(mGluRs)发挥作用。业已有研究提示iGluRs和mGluRs之间存在相互作用,但具体机制尚待阐明。本文从蛋白分子结构、突触可塑性、相互作用可能涉及的信号分子和通路等方面综述了NMDAR与Ⅰ组mGluRs之间的相互作用,旨在为深入研究谷氨酸受体之间的相互作用提供线索。  相似文献   

19.
Lu T  Yang XL 《生理科学进展》1997,28(3):197-202
AMPA受体是离子型谷氨酸受体中重要的一类亚型,在中枢神经系统内主要介导快速的兴奋性突触传递。近年来,AMPA受体独特的失敏特性逐渐被阐明,已经确定了一些特异调节AMPA受体失敏的化合物。大量的生理学和药理学证据表明,AMPA受体失敏在快速兴奋性突触传递中起着重要的作用,对单个突触的传递效率、神经元的整合功能和突触的可塑性均有影响。  相似文献   

20.
代谢型谷氨酸受体l/5(mGluR1/5)是G蛋白偶联受体家族C的重要成员之一,该受体及其介导的下游信号在调节神经系统的正常生理功能起着非常重要作用,并与相关神经系统退行性疾病密切相关。文章介绍了mGluR1/5所介导的信号通路、信号通路调控的分子机制以及其他GPCR受体的相互作用对信号共同调节的分子机制等方面最新研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号