首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
There is considerable interest in the potential use of soils to sequester carbon for climate change mitigation. As such, there is a need to evaluate the potential for carbon accumulation in tropical regions. We compared the effects of three annual additions of nitrogen and/or phosphorus on soil carbon and nitrogen contents and pools (bulk soil, macro‐, meso‐, and microaggregates) of two regenerating secondary tropical dry forest differing in nutrient status and succession stage (10‐year‐old early‐succession stage and approximately 60‐year‐old late‐succession stage). The selected forest sites were located on a shallow calcareous soil in the Yucatán Peninsula (Mexico). The primary production is limited by nitrogen and phosphorus in early‐succession stage and by phosphorus in late‐succession stage. In each forest site, four independent plots (12 × 12 m2) were established, the treatments being: controls and plots fertilized during three consecutive years with nitrogen, phosphorus, or nitrogen plus phosphorus. In both forests, soil carbon and nitrogen contents were consistently high, with soil carbon:nitrogen ratios generally greater than 10. Results indicate that usually there are no significant increases of soil carbon stock associated to late succession but can be increased to 3.7 Mg·ha?1·yr?1 with adoption of fertilizer practices. The potential soil carbon sequestration in early‐succession forest was estimated to be 2.7 Mg·ha?1·yr?1, and there is no indication that fertilization improves carbon sequestration. In short, results suggest that the soil potential for carbon sequestration in these ecosystems is high and depends on the specific nutrient status of the site.  相似文献   

2.
The acetylene reduction assay was used to measure nonsymbiotic and symbiotic nitrogen fixation in a weakly minerotrophic peatland throughout the ice-free season. Nonsymbiotic nitrogen fixation was found in surface materials and subsurface peat. In surface materials, nitrogenase activity measured in the field contributed about 0.6 kg N ha-1 yr-1, was closely associated with Sphagnum, but was not correlated with temperature between 12 and 27 C. No cyanobacteria were found in association with Sphagnum. In subsurface peat, nitrogenase activity measured in situ contributed no more than 0.4 kg N ha-1 yr-1 and was closely correlated with temperature between 7 and 21 C. There were uncertainites in these measurements due to presence of ethylene oxidizing activity and a long time lag. Symbiotic nitrogen fixation was found only in actinomycete-induced root nodules of Myrica gale L. Legumes were absent and the few lichens present lacked nitrogenase activity. Based on acetylene reduction assays, Myrica gale fixed about 35 kg N ha-1 yr-1. Nitrogenase activity in Myrica gale showed a strong seasonal pattern which varied little during three consecutive years even though water levels varied substantially. Nitrogen input to the peatland from nonsymbiotic nitrogen fixation was only 15% the amount contributed by bulk precipitation. Symbiotic fixation, in contrast, contributed approximately six times the amount in bulk precipitation.  相似文献   

3.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   

4.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

5.
Summary This study evaluated the utility of free arginine concentrations as a possible alternative to mineral nutrient concentrations as an indicator of mineral nutrient imbalances in Norway spruce [Picea abies (L.) Karst.]. The concentrations of mineral nutrients and arginine were measured in the needles of spruce trees from two areas in Sweden, one with high (15–30 kg ha–1 year–1) airborne N deposition, and one with lower (1–4 kg ha–1 year–1) deposition. The spruce needles from the area with high deposition in southern Sweden had elevated concentrations of free arginine, especially on peat sites. No increase in concentrations was found in the low deposition area in northern Sweden. The arginine concentrations on different sampling occasions were consistent for each site and for individual trees. Trees on peat sites in the south seemed to suffer from P deficiency in relation to N availability. A tendency for K deficiency in needles from peat sites was also found. Needles from trees on mor plots showed acceptable levels of these nutrient elements. Sites in the northern area showed low N concentrations, but the ratios between the different mineral elements analyzed in this study and N were within ranges normally found. A low P/N ratio correlated to high free arginine concentration. The threshold for elevated arginine concentrations is crossed when P/N ratios drop below 0.07–0.08. A tendency for increased arginine levels when ratios between N and the other mineral elements are low was also found, although it was not as strong as that for the P/N ratio. The results are discussed in relation to mineral nutrient imbalances in spruce stands caused by airborne deposition.  相似文献   

6.
Summary Two trials were established to investigate the supply of nitrogen from ammonium and nitrate fertilizers, slow release nitrogen fertilizers, an organic nitrogen fertilizer and a legume, at two phosphate levels, to eight grass cultivars on colliery spoil. Spoil nitrogen supply and chemical characteristics and herbage dry matter and nitrogen yields were monitored for up to seven years. pH and conductivity fell at both sites. pH trends appeared to be independent of nitrogen treatment. Nitrogen in the ammonium form gave better yields than in the nitrate form when 125 kg N ha–1 was supplied in a season but there was no difference when 62.5 kg N ha–1 was applied. Slow release forms of nitrogen gave better yields more evenly distributed over the season than one application of ammonium sulphate per season. Once established white clover (Trifolium repens) plots had a more consistent nitrogen supply, more evenly distributed yield and better quality herbage than nitrogen fertilizer plots.Lolium perenne yielded poorly at low fertility.Festuca rubra andAgrostis castellana, although establishing slowly, yielded well under high and low fertility.  相似文献   

7.

The increasing world population has forced excessive chemical fertilizer and irrigation to complete the global food demand, deteriorating the water quality and nutrient losses. Short-term studies do not compile the evidences; therefore, the study aimed to identify the effectiveness of reduced doses of inorganic fertilizer and water-saving practices, hence, a six-year experiment (2015–2020) was conducted in China to address the knowledge gap. The experimental treatments were: farmer accustomed fertilization used as control (525:180:30 kg NPK ha−1), fertilizer decrement (450:150:15 kg NPK ha−1), fertilizer decrement + water-saving irrigation (450:150:15 kg NPK ha−1), application of organic and inorganic fertilizer + water-saving irrigation (375:120:0 kg NPK ha−1 + 4.5 tones organic fertilizer ha−1), and application of controlled-release fertilizer (80:120:15 kg NPK ha−1). Each treatment was replicated thrice following a randomized complete block design. The results achieved herein showed that control has the highest losses in the six-year study for total nitrogen (225.97 mg L−1), total soluble nitrogen (121.58 mg L−1), nitrate nitrogen (0.93 mg L−1), total phosphorus (0.57 mg L−1), and total soluble phosphorus (0.57 mg L−1) respectively. Reduced fertilizer and water application improved crop nutrient uptake, nitrogen concentration was significantly enhanced with organic and inorganic fertilizer + water-saving irrigation, P concentration was increased with fertilizer decrement + water-saving irrigation, and K concentration was improved with fertilizer decrement + water-saving irrigation. Hence, this study concludes that reduced inorganic fertilizer dose combined with water-saving practices is significantly helpful in reducing nutrient leaching losses and improving nutrient uptake and water pollution. Further studies are needed to explore the impacts of reduced fertilization and water-saving irrigation on leaching losses. The benefits at different climatic conditions, soil types, and fertilizer types with application methods are also a research gap.

  相似文献   

8.
Soil degradation is one of the most serious threats to sustainable crop production in many tropical agroecosystems where extensification rather than intensification of agriculture has occurred. In the highlands of western Kenya, we investigated soil nitrogen (N) and phosphorus (P) constraints to maize productivity across a cultivation chronosequence in which land‐use history ranged from recent conversion from primary forest to 100 years in continuous cropping. Nutrient treatments included a range of N and P fertilizer rates applied separately and in combination. Maize productivity without fertilizer was used as a proxy measure for indigenous soil fertility (ISF). Soil pools of mineral nitrogen, strongly bound P and plant‐available P decreased by 82%, 31% and 36%, and P adsorption capacity increased by 51% after 100 years of continuous cultivation. For the long rainy season (LR), grain yield without fertilizer declined rapidly as cultivation age increased from 0 to 25 years and then gradually declined to a yield of 1.6 Mg ha?1, which was maintained as time under cultivation increased from 60 to 100 years. LR grain yield in the old conversions was only 24% of the average young conversion grain yield (6.4 Mg ha?1). Application of either N or P alone significantly increased grain yield in both the LR and short rainy (SR) seasons, but only application of 120 kg N ha?1 on the old conversion increased yield by >1 Mg ha?1. In both SR and LR, there was a greater average yield increment response to N and P when applied together (ranging from 1 to 3.8 Mg ha?1 for the LR), with the greatest responses on the old conversions. The benefit–cost ratio (BCR) for applying 120 kg N ha?1 alone was <1 except on the old conversions, while BCRs were>1 for applying 25 kg P ha?1 alone at all levels of conversion for both seasons. Application of both N (120 kg N ha?1) and P (25 kg P ha?1) on the old conversions resulted in the greatest BCRs. This study clearly indicates that maize productivity responses to N and P fertilizer are significantly affected by the age of cultivation and its influence on ISF, but that loss of productivity can be restored rapidly when these limiting nutrients are applied. Management strategies should consider ISF and economic factors to determine optimal N and P input requirements for achieving and sustaining profitable crop production on degraded soils.  相似文献   

9.
Dralle  Kim  Larsen  J. Bo 《Plant and Soil》1995,(1):501-504
In Norway spruce planted on former heathland and fertilized to increase production, a series of experiments (72 sample plots) was established throughout Central and Western Jutland (Denmark) during the springs of 1978 and 79. The sample plots were all fertilized with 120 kg nitrogen in each of two five-year periods. Different types of mixed nitrogen/potassim/phosphorus fertilizer were applied. According to results from fertilization trials in the 1950s and 60s a gain of 3–4 m3 · ha-1 · year-1 was expected. In contrast to these earlier findings, only 0, 76 m3 · ha-1 · year-1 was gained over the two periods as an average of all sample plots. The initial assumption that nitrogen is the main limiting factor for tree growth in Western Denmark no longer seems valid. The results might indicate that due to increasing nitrogen deposition during the 1970s and 80s, potassium and maybe phosphorus are developing into new minimum factors, limiting tree growth and devitalizing the forest ecosystem. Hence, fertilization on these soils should mainly be considered as a way to compensate such nutrient imbalances.  相似文献   

10.
To increase our understanding of the fate of applied nitrogen inPhaseolus vulgaris crops grown under tropical conditions,15N-labelled urea was applied to bean crops and followed for three consecutive cropping periods. Each crop received 100 kg urea-N ha?1 and 41 kg KCl?K ha?1. At the end of each period we estimated each crop's recovery of the added nitrogen, the residual effects of nitrogen from the previous cropping period, the distribution of nitrogen in the soil profile, and leaching losses of nitrogen. In addition, to evaluate potential effects of added phosphorus on nitrogen cycling in this crop, beans were treated at planting with either 35 kg rock-phosphate-P, 35 kg superphosphate-P, or 0 kg P ha?1. Results showed that 31.2% of the nitrogen in the first crop was derived from the applied urea, which represents a nitrogen utilization efficiency of 38.5%. 6.2% of the nitrogen in the second crop was derived from fertilizer applied to the first crop, and 1.4% of the nitrogen in the third crop. Nitrogen utilization efficiencies for these two crops, with respect to the nitrogen applied to the first crop, were 4.6 and 1.2%, respectively. In total, the three crops recovered 44.3% of the nitrogen applied to the first crop. The remainder of the nitrogen was either still in the soil profile or had been lost by leaching, volatilization or denitrification.15N enrichment of mineral-N(NO3+NH4) suggests that at the end of the second crop, the pulse of fertilizer applied to the first crop had probably passed the 120 cm depth.15N enrichment of organic-N suggests that root activity of beans and weeds transported nitrogen to 90–120 cm (or deeper). We could account for 109 kg fertilizer-N ha?1 in harvested biomass, crop residue, and soil at the end of the first cropping period. This indicates an experimental error of about 10% if no nitrogen was lost by volatilization, denitrification, or leaching below 120 cm. At the end of the second and third crops, 76 and 80 kg N ha?1, respectively, could be accounted for, suggesting that 20 to 25% of the applied-N was lost from the system over a 2-crop period. The two types of added phosphorus did not significantly differ in their effects on bean yields.  相似文献   

11.
Nitrogen transformations in the soil, and the resulting changes in carbon and nitrogen compounds in soil percolate water, were studied in two stands of Norway spruce (Picea abies L.). Over the last 30 years the stands were repeatedly limed (total 6000 kg ha–1), fertilized with nitrogen (total about 900 kg ha–1), or both treatments together. Both aerobic incubations of soil samples in the laboratory, and intact soil core incubations in the field showed that in control plots ammonification widely predominated over nitrification. In both experiments nitrogen addition increased the formation of mineral-N. In one experiment separate lime and nitrogen treatments increased nitrification, in the other, only lime and nitrogen addition together had this effect. In one experiment immobilization of nitrogen to soil microbial biomass was lower in soil only treated with nitrogen. Soil percolate water was collected by means of lysimeters placed under the humus layer and 10 cm below in the mineral soil. Total N, NH4-N and NO3-N were measured, and dissolved organic nitrogen was fractioned according to molecular weight. NO3-N concentrations in percolate water, collected under the humus layer, were higher in plots treated with N-fertilizer, especially when lime was also added. The treatments had no effect on the N concentrations in mineral soil. A considerable proportion of nitrogen was leached in organic form.  相似文献   

12.
The impact of extended herbicide (H) and annual fertilizer (F) treatments on the mineral soil carbon (C) pool and nitrogen (N) and phosphorous (P) availability were analyzed in managed loblolly pine (Pinus taeda L.) plantations in the Piedmont of Georgia in stands ranging from 4 to 16 years old. Mineral soil C, N, P, and extractable P were measured in 66 plots in three locations comparing H, F, and their combination HF to the Control plots. Soils were sampled in January 2000 near Eatonton (n = 40), in August 2001 near Athens (n = 12), and in March 2003 near Dawsonville (n = 14). In addition, twelve plots (two H and two HF at each location) were measured on 17 dates using a mixed bead resin core technique to estimate mineral soil N availability. At all three study locations the H treatment tended to deplete the mineral soil C pool while, overall, the F treatments did not determine any significant mineral soil C increase. The soil C pool (0- to 50-cm depth) was depleted by about 5 Mg C ha−1 under the H-treated plots near Eatonton. The HF plots had much higher resin-extractable N than the corresponding H plots in all months of the year. At a plot level, HF values ranged from about 9 to 3,195 μg N g−1 resin while H values ranged from about 4 to 858 μg N g−1 resin. The corresponding annual cumulative resin-extractable N ranged from about 13 kg N ha−1 in the H to about 372 kg N ha−1 in the HF. Extractable P values were also elevated in all F-treated plots. Fertilization and herbicide treatments favored C sequestration only in the aboveground biomass. No significant change was observed in the mineral soil C pool, despite the generally observed increases in soil available N and P.  相似文献   

13.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

14.
 The influence of 23 years of phosphorus (P) application at three annual rates of 0, 17.5 and 52.5 kg ha–1 on arbuscular mycorrhizal (AM) fungal colonization was studied 10 years after the fertilization treatment ended. The annual application of 52.5 kg ha–1 was about twice the annual crop P extraction and after 23 years had resulted in a measured increase of 23% in the soil total-P concentration. After 10 and 11 years without fertilization, the total mycorrhizal and arbuscular colonization of the plots previously fertilized at this high rate were still significantly lower than in the plots subjected to the 0 and 17.5 kg ha–1 rates. Plots previously fertilized annually at the rate of 52.5 kg ha–1 also had a lower benefit : cost ratio for the symbiosis between AM fungi and plants. Furthermore, P-use efficiency was lower in these plots, although no decrease in total dry matter production was found. Accepted: 13 October 2000  相似文献   

15.
Zhang  T.Q.  MacKenzie  A.F. 《Plant and Soil》1997,192(1):133-139
Limited efficiency of fertilizer P may be improved through an understanding of soil P fraction changes with time. This study examined sequential changes in soil organic P (Po) and inorganic P (Pi) in a Ste. Rosalie clay (Humic Gleysol; fine, mixed, frigid, Typic Humaquept) under continuous corn with and without P fertilization. Soil P was fractionated into Bicarb-Pi and Po, NaOH-1-Pi and Po, HCl-Pi, NaOH-Pi and Po, and Residue-P. In the non-P fertilized plots, soil total extractable Po declined by 14% of the initial value over five years of corn production, whereas soil Pi fractions were unchanged. The losses of soil Po were mainly from NaOH-1-Po. Added fertilizer P increased NaHCO3-Pi and NaOH-1-Pi in plots receiving 44 and 132 kg P ha-1 yr-1 and increased Residue-P in plots receiving 132 kg P ha-1 yr-1. Although NaOH-1-Po decreased slightly in the plots receiving 44 kg ha-1 yr-1 P fertilizer, total soil extractable Po was maintained in P fertilized plots. Mineralization of from 16 to 29 kg P ha-1 yr-1 Po was needed to account for soil Po losses. Bicarb-Pi and NaOH-1-Pi appeared to be most important for assessment of soil P fertility changes in long-term fertilized soils.  相似文献   

16.
In two years of trials, roots of ryegrass took up more 32P-labelled phosphate than roots of fescue. Application of 672 kg N ha-1 increased phosphate absorption compared with application of 112 kg N ha-1. Roots in mineral soil absorbed more phosphate than those in peat soil. In both soils uptake decreased as depth of phosphate injection increased from 5 to 30 cm. An interaction occurred whereby roots in the intermediate depth (10–22-5 cm) in peat absorbed less phosphate than in mineral soil and this was apparently unrelated to the exchange or sorption properties of the soil.  相似文献   

17.
A field plot experiment was conducted on two types of paddy soils in the Taihu Lake Region of China from June 2000 through 2002 to assess phosphorus (P) losses by runoff and drainage flow and the effectiveness of rice–wheat double cropping on reducing P losses from paddy soils. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg P ha–1 for rice season trials, and 0, 20, 80, and 160 kg P ha–1 for wheat season trials. The experiments consisted of four replicates (plots of 5 × 6 m in a randomized block design) of each treatment in Argic stagnic anthrosols (Anzhen site) and six replicates in Cumulic stagnic anthrosols (Changshu site). P30 and P20 treatments (30 and 20 kg P ha–1 in rice and wheat seasons, respectively) were considered as conventional P application rates in this area. Higher P treatments, such as P150 and P300 for rice and P80 and P160 for wheat, were intended to simulate the status of soil P in ~10–20 years with an application of P30 or P20 kg P ha–1 each season. Results revealed that the average concentration of total P (TP) in runoff samples was 0.870 mg P l–1 from P30 plots during the rice season, and 0.763 mg P l–1 from P20 plots during the wheat season in both years at the Anzhen site, while it was 0.703 and 1.292 mg P l–1, respectively, at the Changshu site. Average TP load (mass loss) at the Anzhen site with conventional P application rates was 220.9 and 439.5 g P ha–1 during rice season in 2000/2001 and 2001/2002, respectively, but was 382.3 and 709.4g P ha–1 during wheat season, respectively. Mass loss at the Changshu site was 140.4 and 165.7 g P ha–1 during the rice season and 539.1 and 1184.6 g P ha–1 during the wheat season, respectively. P losses from paddy soils were significantly greater during the wheat season, especially at the Changshu site, indicating that planting rice reduced P. Phosphate fertilizer levels significantly affected P concentrations and P loads in runoff both seasons. Both mean concentrations and average seasonal P loads from the P150/P80 plots were lower than that from the P300/P160 plots, but significantly higher than that from the P30/P20 and P0 plots. This implied that runoff P loads would be greatly increased in 10–20 years as a result of the accumulation of soil P if 50 kg P ha–1 (rice season plus wheat season) is applied each year.  相似文献   

18.
A rice–fish culture experiment was conducted to determine the effects of different fertilizer treatments on water quality parameters, i.e. dissolved oxygen, temperature, pH and conductivity, as well as the nutrients nitrogen, potassium and phosphorus. Data gathered were subjected to analysis of variance. Dissolved oxygen, nitrogen and potassium concentrations showed significant differences (P<0.5) among the various rice‐cum‐fish management systems, with the highest mean concentration in the fish‐only management system. The insignificant difference (P>0.05) in the oxygen concentration between rice‐only and rice‐cum‐fish management systems was probably due to the narrow spacing of rice cultivars (20 × 20 cm). Under different fertilizer treatments, dissolved oxygen, nitrogen and potassium concentrations were not significantly different (P>0.05), indicating that different fertilizer treatments had no effect on their concentrations. Mean temperature, pH, conductivity and phosphorus concentrations in all rice‐cum‐fish management systems and fertilizer treatments did not differ significantly (P>0.05) from each other. This might possibly be due to the hydrogeology and climatic conditions of the area. However, all levels of studied water quality parameters were tolerable to the fish (Oreochromis niloticus) in the rice–fish ecosystem. There was no significant difference (P>0.05) in rice yield between the rice–fish management system and the rice‐only management system. However, there was a significant difference (P<0.05) under different fertilizer treatments, with nitrogen/phosphorus/potassium (NPK) (20 : 10 : 10) giving the highest production of an estimated 14.36 kg ha?1 year?1, indicating that fertilizer treatments had an effect on the rice yield. Fish growth was not significantly different (P>0.05) under different rice–fish management systems, but was significant (P<0.05) under different fertilizer treatments. Chicken manure gave the best growth with 17.7±5.97 g; estimated fish yields were 343 and 602 kg ha?1 year?1 in fish monoculture and rice–fish culture respectively. It is recommended that farmers who are more inclined to fish or rice production in integrated rice‐cum‐fish management systems could use chicken manure and NPK (20 : 10 : 10) respectively.  相似文献   

19.
Restoration of soil organic carbon (SOC) in arable lands represents potential sink for atmospheric CO2. The strategies for restoration of SOC include the appropriate land use management, cropping sequence, fertilizer and organic manures application. To achieve this goal, the dynamics of SOC and nitrogen (N) in soils needs to be better understood for which the long-term experiments are an important tool. A study was thus conducted to determine SOC and nitrogen dynamics in a long-term experiment in relation to inorganic, integrated and organic fertilizer application in rice-cowpea system on a sandy loam soil (Typic Rhodualf). The fertilizer treatments during rice included (i) 100% N (@ 100 kg N ha?1), (ii) 100% NP (100 kg N and 50 kg P2O5 ha?1), (iii) 100% NPK (100 kg N, 50 kg P2O5 and 50 kg K2O ha?1) as inorganic fertilizers, (iv) 50% NPK + 50% farm yard manure (FYM) (@ 5 t ha?1) and (v) FYM alone @ 10 t ha?1 compared with (vi) control treatment i.e. without any fertilization. The N alone or N and P did not have any significant effect on soil carbon and nitrogen. The light fraction carbon was 53% higher in NPK + FYM plots and 56% higher in FYM plots than in control plots, in comparison to 30% increase with inorganic fertilizers alone. The microbial biomass carbon and water-soluble carbon were relatively higher both in FYM or NPK + FYM plots. The clay fraction had highest concentration of C and N followed by silt, fine sand and coarse sand fractions in both surface (0–15 cm) and subsurface soil layers (15–30 cm). The C:N ratio was lowest in the clay fraction and increased with increase in particle size. The C and N enrichment ratio was highest for the clay fraction followed by silt and both the sand fractions. Relative decrease in enrichment ratio of clay in treatments receiving NPK and or FYM indicates comparatively greater accumulation of C and N in soil fractions other than clay.  相似文献   

20.
Prunings of Calliandra calothyrsus, Grevillea robusta, Leucaena diversifolia and farm yard manure were applied each cropping season at 3 and 6 t dry matter ha−1 to an Oxisol in Burundi. The field plots also received basal applications of nitrogen (N), phosphorus (P) and potassium (K). Application of the tree prunings or farm yard manure decreased the concentration of monomeric inorganic aluminium (Al) in soil solution from 2.92 mg Al dm−3 in the control plots to 0.75 mg Al dm−3 in the plots receiving 6 t ha−1 Calliandra prunings. The other organic materials also decreased the concentration of monomeric inorganic aluminium in the soil solution. The lowered Al concentration led to a corresponding decrease in the percentage Al saturation of the 0–10 cm soil layer from 80% to 68%. Grain yields of maize and beans were strongly inversely related to the percentage Al saturation of the soil. This confirms that soil acidity was the main constraint to maize and beans production. The yield improvement was mainly attributed to the ameliorating effects of the organic matter application on Al toxicity. The nutrient content had less effect presumably because of fertilizer use. In the best treatments, the yield of maize increased from 0.9 to 2.2 t ha−1 and the corresponding beans yield increased from 0.2 to 1.2 t ha−1. A C Borstlap Section editor  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号