首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In response to pathogens, plant cells exhibit a rapid increase in the intracellular calcium concentration and a burst of reactive oxygen species (ROS). The cytosolic increase in Ca2+ and the accumulation of ROS are critical for inducing programmed cell death (PCD), but the molecular mechanism is not fully understood. We screened an Arabidopsis mutant, sad2‐5, which harbours a T‐DNA insertion in the 18th exon of the importin beta‐like gene, SAD2. The H2O2‐induced increase in the [Ca2+]cyt of the sad2‐5 mutant was greater than that of the wild type, and the sad2‐5 mutant showed clear cell death phenotypes and abnormal H2O2 accumulation under fumonisin‐B1 (FB1) treatment. CaCl2 could enhance the FB1‐induced cell death of the sad2‐5 mutant, whereas lanthanum chloride (LaCl3), a broad‐spectrum calcium channel blocker, could restore the FB1‐induced PCD phenotype of sad2‐5. The sad2‐5 fbr11‐1 double mutant exhibited the same FB1‐insensitive phenotype as fbr11‐1, which plays a critical role in novo sphingolipid synthesis, indicating that SAD2 works downstream of FBR11. These results suggest the important role of nuclear transporters in calcium‐ and ROS‐mediated PCD response as well as provide an important theoretical basis for further analysis of the molecular mechanism of SAD2 function in PCD and for improvement of the resistance of crops to adverse environments.  相似文献   

3.
Spatial patterns of ecosystem processes constitute significant sources of uncertainty in greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim of this study was to describe temporal variability in the spatial patterns of grassland CO2 and N2O flux under varying environmental conditions and to assess effects of the grassland management (grazing and mowing) on flux patterns. We made spatially explicit measurements of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and soil temperature during a 4-year study in the vegetation periods at grazed and mowed grasslands. Sampling was conducted in 80 × 60 m grids of 10 m resolution with 78 sampling points in both study plots. Soil respiration was monitored nine times, and N2O flux was monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen were used as background factors at each sampling position, while aboveground biomass, soil water content, and soil temperature were considered as covariates in the spatial analysis. Data were analyzed using variography and kriging. Altitude was autocorrelated over distances of 40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, and the covariates. Altitude was inversely related to soil water content and aboveground biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to increase heterogeneity and linkage of the spatial patterns, whereas mowing had a homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground biomass were temporally variable especially in the first 2 years of the experiment, whereas spatial patterns were more persistent (mostly significant correlation at p < 0.05 between location ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns after a wet year indicated the recovery potential of grasslands following drought and suggested that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes.  相似文献   

4.
5.
6.
The surface of bogs is commonly patterned and composed of different vegetation communities, defined by water level. Carbon dioxide (CO2) dynamics vary spatially between the vegetation communities. An understanding of the controls on the spatial variation of CO2 dynamics is required to assess the role of bogs in the global carbon cycle. The water level gradient in a blanket bog was described and the CO2 exchange along the gradient investigated using chamber based measurements in combination with regression modelling. The aim was to investigate the controls on gross photosynthesis (PG), ecosystem respiration (RE) and net ecosystem CO2 exchange (NEE) as well as the spatial and temporal variation in these fluxes. Vegetation structure was strongly controlled by water level. The species with distinctive water level optima were separated into the opposite ends of the gradient in canonical correspondence analysis. The number of species and leaf area were highest in the intermediate water level range and these communities had the highest PG. Photosynthesis was highest when the water level was 11 cm below the surface. Ecosystem respiration, which includes decomposition, was less dependent on vegetation structure and followed the water level gradient more directly. The annual NEE varied from −115 to 768 g CO2 m−2, being lowest in wet and highest in dry vegetation communities. The temporal variation was most pronounced in PG, which decreased substantially during winter, when photosynthetic photon flux density and leaf area were lowest. Ecosystem respiration, which is dependent on temperature, was less variable and wintertime RE fluxes constituted approximately 24% of the annual flux.  相似文献   

7.
The thermal stability and activity of enzymes in supercritical carbon dioxide (SC CO(2)) and near-critical propane were studied at a pressure of 300 bar in the temperature range 20-90 degrees C. Proteinase from Carica papaya was incubated in microaqueous SC CO(2) at atmospheric pressure in a nonaqueous system. Lipase stability in an aqueous medium at atmospheric pressure and in SC CO(2) as well as near-critical propane at 100 bar and 40 degrees C was studied. In order to investigate the impact of solvent on lipases, these were chosen from different sources: Pseudomonas fluorescences, Rhizpous javanicus, Rhizopus niveus and porcine pancreas. On the basis of our previous study on lipase activities in dense gases, a high-pressure continuous flat-shape membrane reactor was designed. The hydrolysis of sunflower oil in SC CO(2) was performed as a model reaction in this reactor. The reaction was catalyzed by the lipase preparation Lipolase 100T and was performed at 50 degrees C and 200 bar.  相似文献   

8.
TGFβ2 is an essential regulator of immune cell functionality, but the mechanisms whereby it drives immune infiltration in gastric cancer remain uncertain. The Oncomine and Tumor Immunoassay Resource (TIMER) databases were used for assessing the expression of TGFβ2, after which TIMER was used to explore the relationship between TGFβ2 and tumour immune infiltration. Finally, we assessed how TGFβ2 expression correlated with the expression of a set of marker genes associated with immune infiltration using TIMER and GEPIA. We determined TGFβ2 expression to be significantly correlated with outcome in multiple types of cancer in the Cancer Genome Atlas (TCGA), with the effect being particularly pronounced in gastric cancer. Furthermore, elevated TGFβ2 expression was found to be significantly correlated with gastric cancer N staging, and with the expression of a variety of immune markers associated with particular immune cell subsets. These results indicate that TGFΒ2 is associated with patient outcome and tumour immune cell infiltration in multiple cancer types. This suggests that TGFβ2 is a key factor which governs immune cell recruitment to gastric cancer tumours, potentially playing a vital role in governing immune cell infiltration and thus representing a valuable prognostic biomarker in gastric cancer patients.  相似文献   

9.
Fusarium langsethiae is a toxigenic fungus that was formally described as a new species in 2004. This fungus was first detailed in the 1990s but was initially referred to as ‘powdery Fusarium poae’ having a spore morphology similar to F. poae but a mycotoxin profile like that of Fusarium sporotrichioides. The species has been isolated from infected oat, wheat and barley grains but has been reported as more problematic in the former crop rather than the latter two. Whilst the epidemiology of F. langsethiae remains unclear, the fungus has been shown to produce high levels of type‐A trichothecenes HT‐2 and T‐2 toxins in small‐grain cereals. HT‐2 and T‐2 toxins are two of the most potent trichothecenes capable of inhibiting protein synthesis in eukaryotes. In this regard, mycotoxin contamination caused by F. langsethiae is clearly a food and feed safety hazard. With the European Commission considering legislation of HT‐2 and T‐2 toxins, more information is required not only on the producer and conditions favouring mycotoxin production, but also on reliable methods of pathogen detection and reduction of cereal contamination. This review describes recent research concerning the known epidemiology of F. langsethiae and suggestions of what needs to be known about the fungus in order to be able to understand and employ measures for preventing its infection and contamination of cereals with HT‐2 and T‐2 toxins.  相似文献   

10.
The β2‐adrenoceptor (β2AR) was one of the first Family A G protein‐coupled receptors (GPCRs) shown to form oligomers in cellular membranes, yet we still know little about the number and arrangement of protomers in oligomers, the influence of ligands on the organization or stability of oligomers, or the requirement for other proteins to promote oligomerization. We used fluorescence resonance energy transfer (FRET) to characterize the oligomerization of purified β2AR site‐specifically labelled at three different positions with fluorophores and reconstituted into a model lipid bilayer. Our results suggest that the β2AR is predominantly tetrameric following reconstitution into phospholipid vesicles. Agonists and antagonists have little effect on the relative orientation of protomers in oligomeric complexes. In contrast, binding of inverse agonists leads to significant increases in FRET efficiencies for most labelling pairs, suggesting that this class of ligand promotes tighter packing of protomers and/or the formation of more complex oligomers by reducing conformational fluctuations in individual protomers. The results provide new structural insights into β2AR oligomerization and suggest a possible mechanism for the functional effects of inverse agonists.  相似文献   

11.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

12.
It is well known that the spatial distribution of the calcium ion channels in the endoplasmic reticulum is discrete. We study the Ca2+ spiral pattern formation based on a model in which ion channels are discretely and randomly distributed. Numerical simulations are performed on different types of media with the Ca2+ release sites uniformly distributed, discretely and uniformly arranged, or discretely and randomly arranged. The comparisons among the different media show that random distribution is necessary for spontaneous initiation of Ca2+ spiral waves, and the discrete and random distribution is of significance for spiral waves under physiologically reasonable conditions. The period and velocity of spiral waves are also calculated, and they are not prominently changed by varying the type of medium.  相似文献   

13.
Colonies of the cheilostome bryozoan Schizoporella errata were grown at a site near Ischia Island (Tyrrhenian Sea, Italy) where volcanogenic CO2 emissions lower seawater pH to 7.76, simulating levels of ocean acidification predicted for the end of the present century. Compared with colonies from a control site (mean pH = 8.09), putative defensive polymorphs (avicularia) were significantly fewer, and retarded growth of zooidal basal and lateral walls was evident at the low pH site. The lower proportion of avicularia suggests a switch in resource allocation away from defence to favouring rapid growth. In addition, corrosion of the skeleton was observed in both new and old zooids at the low pH site, and feeding zooids were slightly smaller but had larger orifices for the protrusion of feeding lophophores. These findings corroborate previous studies demonstrating potential dissolution of carbonate skeletons in low pH seawater, while providing new insight into the possible ability of colonial species to respond to ocean acidification by adjusting resource allocation between zooids of different types.  相似文献   

14.
The relationship between leaf photosynthetic rate (A) in a vegetation canopy and the net ecosystem CO2 exchange (NEE) over an entire ecosystem is not well understood. The aim of the present study is to assess the coordinated changes in NEE derived with eddy covariance, A measured in leaf cuvette, and their associations in a rainfed maize field. The light response-curves were estimated for the carbon assimilation rate at both the leaf and ecosystem scales. NEE and A synchronically changed throughout the day and were greater around noon and persisted longer during rapid growth periods. The leaf A had a similar pattern of daytime changes in the top, middle, and bottom leaves. Only severe leaf ageing led to a significant decline in the maximum efficiency of photosystem II (PSII) photochemistry. The greater maximum NEE was associated with a higher ecosystem quantum yield. NEE was positively and significantly correlated with the leaf A averaged based on the vertical distribution of leaf area. The finding highlights the feasibility of assessing NEE by leaf CO2 exchange because of most of experimental data obtained with leaf cuvette methods; and also implies that simultaneously enhancing leaf photosynthetic rate, electron transport rate, net carbon assimilation at whole ecosystem might play a critical role for the enhancement of crop productivity.  相似文献   

15.
16.
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Contra-IL 2; a suppressor lymphokine that inhibits IL 2 activity   总被引:3,自引:0,他引:3  
Suppressive activity of culture supernatant of AS-9 (AS-9 CS), a T cell hybridoma line that was derived from fusion of BW5147 thymoma and splenic T cells of anti-lymphocyte serum-treated C3H mice, was analyzed. AS-9 CS inhibited allogeneic cytotoxic T lymphocyte (CTL) generation as well as T cell proliferation to alloantigens and mitogens, but failed to inhibit B cell response to lipopolysaccharide or growth of tumor and fibroblast cells. Although addition of AS-9 CS to the allogeneic sensitization culture as late as on day 2 of incubation resulted in maximal inhibiton of CTL generation, removal of AS-9 CS on day 3 of incubation abolished its inhibitory effect. Addition of purified IL 2 together with AS-9 CS to the allogeneic sensitization cultures only partially abrogated the suppression. Experiments with IL 2-dependent cytotoxic T cell line (CTLL) showed that AS-9 CS suppressed the IL 2-induced proliferation of CTLL. Preincubation of AS-9 CS with CTLL removed its inhibitory effect on CTL generation. These results indicate that AS-9 CS interferes with the mechanism of T cell activation by IL 2. On this basis, AS-9 CS was named contra-IL 2.  相似文献   

18.
Natural bond orbital (NBO) analyses and dissected nucleus-independent chemical shifts (NICS π z z ) were computed to evaluate the bonding (bond type, electron occupation, hybridization) and aromatic character of the three lowest-lying Si2CH2 (1-Si, 2-Si, 3-Si) and Ge2CH2 (1-Ge, 2-Ge, 3-Ge) isomers. While their carbon C3H2 analogs favor classical alkene, allene, and alkyne type bonding, these Si and Ge derivatives are more polarizable and can favor “highly electron delocalized”? and “non-classical”? structures. The lowest energy Si 2CH2 and Ge 2CH2 isomers, 1-Si and 1-Ge, exhibit two sets of 3–center 2–electron (3c-2e) bonding; a π-3c-2e bond involving the heavy atoms (C–Si–Si and C–Ge–Ge), and a σ-3c-2e bond (Si–H–Si, Ge–H–Ge). Both 3-Si and 3-Ge exhibit π and σ-3c-2e bonding involving a planar tetracoordinated carbon (ptC) center. Despite their highly electron delocalized nature, all of the Si2CH2 and Ge2CH2 isomers considered display only modest two π electron aromatic character (NICS(0) π z z =--6.2 to –8.9 ppm, computed at the heavy atom ring center) compared to the cyclic-C 3H2 (–13.3 ppm).
Graphical Abstract The three lowest Si2CH2 and Ge2CH2 isomers.
  相似文献   

19.
Our previous results have demonstrated that both nitric oxide (NO) and hydrogen peroxide (H2O2) are involved in the promotion of adventitious root development in marigold (Tagetes erecta L.). However, not much is known about the intricate molecular network of adventitious root development triggered by NO and H2O2. In this study, the involvement of calcium (Ca2+) and calmodulin (CaM) in NO- and H2O2-induced adventitious rooting in marigold was investigated. Exogenous Ca2+ was capable of promoting adventitious rooting, with a maximal biological response at 50 μM CaCl2. Ca2+ chelators and CaM antagonists prevented NO- and H2O2-induced adventitious rooting, indicating that both endogenous Ca2+ and CaM may play crucial roles in the adventitious rooting induced by NO and H2O2. NO and H2O2 treatments increased the endogenous content of Ca2+ and CaM, suggesting that NO and H2O2 enhanced adventitious rooting by stimulating the endogenous Ca2+ and CaM levels. Moreover, treatment with Ca2+ enhanced the endogenous levels of NO and H2O2. Additionally, Ca2+ might be involved as an upstream signaling molecule for CaM during NO- and H2O2-induced rooting. Altogether, the results suggest that both Ca2+ and CaM are two downstream signaling molecules in adventitious rooting induced by NO and H2O2.  相似文献   

20.
Nitrogen reduction by ferrous iron has been suggested as an important mechanism in the formation of ammonia on pre-biotic Earth. This paper examines the effects of adsorption of ferrous iron onto a goethite (alpha-FeOOH) substrate on the thermodynamic driving force and rate of a ferrous iron-mediated reduction of N2 as compared with the homogeneous aqueous reaction. Utilizing density functional theory and Marcus Theory of proton coupled electron transfer reactions, the following two reactions were studied: Fe2+aq + N2aq + H2Oaq --> N2H* + FeOH2+aq and triple bond Fe2+ads + N2aq + 2H2Oaq --> N2H* + alpha-FeOOHs + 2H+aq. Although the rates of both reactions were calculated to be approximately zero at 298 K, the model results suggest that adsorption alters the thermodynamic driving force for the reaction but has no other effect on the direct electron transfer kinetics. Given that simply altering the thermodynamic driving force will not reduce dinitrogen, we can make mechanistic connections between possible prebiotic pathways and biological N2 reduction. The key to reduction in both cases is N2 adsorption to multiple transition metal centers with competitive H2 production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号