BACKGROUND AND AIMS: Anoxia leads to an energy crisis, tolerance of which varies from plant to plant. Although the apoplast represents an important storage and reaction space, and engages in the mediation of membrane transport, this extracellular compartment has not yet been granted a role during oxygen shortage. Here, an attempt is made to highlight the importance of the apoplast during oxygen stress and to test whether information about it is transferred systemically in Hordeum vulgare. METHODS: Non-invasive ion-selective microprobes were used which, after being inserted through open stomata, directly contact the apoplastic fluid and continuously measure the apoplastic pH and changes to it. KEY RESULTS: (a) Barley leaves respond to oxygen stress with apoplastic alkalinization and membrane depolarization. These responses are persistent under anoxia (N2; O2 < 3%) but transient under hypoxia. (b) Being applied to the root, the information 'anoxia' is signalled to the leaf as an increase in pH, whereas 'hypoxia' is not: flooding of the roots within the first 2 h has no effect on the leaf apoplastic pH, whereas anoxia (N2) or chemical anoxia (NaCN/salicylic hydroxamic acid) rapidly increase the leaf apoplastic pH. (c) Under anoxia, the proton motive force suffers a decrease by over 70 %, which impairs H(+) -driven transport. CONCLUSIONS: Although anoxia-induced apoplastic alkalinization is a general response to stress, its impact on the proton motive force (reduction) and thus on transport mediation of energy-rich compounds is evident. It is concluded that anoxia tolerance depends on how the plant is able to hold the proton motive force and H(+) turnover at a level that guarantees sufficient energy is harvested to overcome the crisis. 相似文献
Intracellular pH is tightly regulated and differences in pH between the cytoplasm and organelles have been reported1. Regulation of cellular pH is crucial for homeostatic control of physiological processes that include: protein, DNA and RNA synthesis, vesicular trafficking, cell growth and cell division. Alterations in cellular pH homeostasis can lead to detrimental functional changes and promote progression of various diseases2. Various methods are available for measuring intracellular pH but very few of these allow simultaneous measurement of pH in the cytoplasm and in organelles. Here, we describe in detail a rapid and accurate method for the simultaneous measurement of cytoplasmic and organellar pH by using confocal microscopy on living cells3. This goal is achieved with the use of two pH-sensing ratiometric dyes that possess selective cellular compartment partitioning. For instance, SNARF-1 is compartmentalized inside the cytoplasm whereas HPTS is compartmentalized inside endosomal/lysosomal organelles. Although HPTS is commonly used as a cytoplasmic pH indicator, this dye can specifically label vesicles along the endosomal-lysosomal pathway after being taken up by pinocytosis3,4. Using these pH-sensing probes, it is possible to simultaneously measure pH within the endocytic and cytoplasmic compartments. The optimal excitation wavelength of HPTS varies depending on the pH while for SNARF-1, it is the optimal emission wavelength that varies. Following loading with SNARF-1 and HPTS, cells are cultured in different pH-calibrated solutions to construct a pH standard curve for each probe. Cell imaging by confocal microscopy allows elimination of artifacts and background noise. Because of the spectral properties of HPTS, this probe is better suited for measurement of the mildly acidic endosomal compartment or to demonstrate alkalinization of the endosomal/lysosomal organelles. This method simplifies data analysis, improves accuracy of pH measurements and can be used to address fundamental questions related to pH modulation during cell responses to external challenges. 相似文献
Mitochondria contribute to redox and calcium balance, and apoptosis thus regulating cellular fate. In the present study, mitochondrial staining applying a novel dye, V07‐07059, was performed in human embryonic kidney cells, a human vascular endothelial cell line and primary human mononuclear cells. The new fluorescent mega Stokes dye (peak excitation: 488 nm, peak emission: 554 nm) showed superior fluorescent properties and stability. V07‐07059 stains mitochondria dependent on their membrane potential and is safe to use in vitro and in vivo. Unlike other dyes applied in this context (e.g. Tetramethylrhodamine methyl ester), V07‐07059 only marginally inhibits mitochondrial respiration and function. V07‐07059 enables real time imaging of mitochondrial trafficking and remodeling. Prolonged staining with V07‐07059 demonstrated the dyes suitability as a novel probe to track cells. In comparison to the widely used standard for cell proliferation and tracking studies 5(6)‐diacetate N‐succinimidyl ester, V07‐07059 proved superior regarding toxicity and photostability.
Background information. Cell fusion is known to underlie key developmental processes in humans and is postulated to contribute to tissue maintenance and even carcinogenesis. The mechanistic details of cell fusion, especially between different cell types, have been difficult to characterize because of the dynamic nature of the process and inadequate means to track fusion products over time. Here we introduce an inducible system for detecting and tracking live cell fusion products in vitro and potentially in vivo. This system is based on BiFC (bimolecular fluorescence complementation) analysis. In this approach, two proteins that can interact with each other are joined to fragments of a fluorescent protein and are expressed in separate cells. The interaction of said proteins after cell fusion produces a fluorescent signal, enabling the identification and tracking of fusion products over time. Results. Long‐term tracking of fused p53‐deficient cells revealed that hybrid cells were capable of proliferation. In some cases, proliferation was preceded by nuclear fusion and division was asymmetric (69%±2% of proliferating hybrids), suggesting chromosomal instability. In addition, asymmetric division following proliferation could give rise to progeny indistinguishable from unfused counterparts. Conclusions. These results support the possibility that the chromosomal instability characteristic of tumour cells may be incurred as a consequence of cell fusion and suggest that the role of cell fusion in carcinogenesis may have been masked to this point for lack of an inducible method to track cell fusion. In sum, the BiFC‐based approach described here allows for comprehensive studies of the mechanism and biological impact of cell fusion in nature. 相似文献
Green fluorescent carbon dots (G-CDs) were fabricated from Coptis chinensis directly via one-step hydrothermal treatment for the determination of quercetin (QCT) and pH sensing. The obtained G-CDs have low cytotoxicity, good photostability and excellent water solubility. The optimal excitation wavelength and emission wavelength were 480 and 530 nm. A remarkable emission reduction displayed when QCT was added to the G-CDs and the linear detection range is 0–200 μM, the limit of detection is 4.41 nM. The proposed method was applied to the determination of QCT in Haerbin beer products with satisfactory successful recovery. Furthermore, the G-CDs exhibited sensitive changes to pH and two fluorescent pH sensors in the linear ranges of 2.0–6.0 and 6.0–11.0 were constructed based on this. They also provide a feasible method to measure the pH value of real water samples. Importantly, the fluorescent sensor has been extended to detect QCT in yeast cell, demonstrating the G-CDs present potential biosensing application prospect. 相似文献
Fluorescence Lifetime Imaging (FLIM) is an attractive microscopy method in the life sciences, yielding information on the sample otherwise unavailable through intensity‐based techniques. A novel Noise‐Corrected Principal Component Analysis (NC‐PCA) method for time‐domain FLIM data is presented here. The presence and distribution of distinct microenvironments are identified at lower photon counts than previously reported, without requiring prior knowledge of their number or of the dye's decay kinetics. A noise correction based on the Poisson statistics inherent to Time‐Correlated Single Photon Counting is incorporated. The approach is validated using simulated data, and further applied to experimental FLIM data of HeLa cells stained with membrane dye di‐4‐ANEPPDHQ. Two distinct lipid phases were resolved in the cell membranes, and the modification of the order parameters of the plasma membrane during cholesterol depletion was also detected.
Noise‐corrected Principal Component Analysis of FLIM data resolves distinct microenvironments in cell membranes of live HeLa cells. 相似文献
Recent evidence suggests that proliferating cells polarize damaged proteins during mitosis to protect one cell from aging, and that the structural conformation of damaged proteins mediates their toxicity. We report that the growth, resistance to stress, and differentiation characteristics of a cancer cell line (PC12) with an inducible Huntingtin (Htt) fused to enhanced green fluorescent protein (GFP) are dependent on the conformation of Htt. Cell progeny containing inclusion bodies have a longer cell cycle and increased resistance to stress than those with diffuse Htt. Using live imaging, we demonstrate that asymmetric division resulting from a cell containing a single inclusion body produces sister cells with different fates. The cell that receives the inclusion body has decreased proliferation and increased differentiation compared with its sister cell without Htt. This is the first report that reveals a functional consequence of the asymmetric division of damaged proteins in mammalian cells, and we suggest that this is a result of inclusion body-induced proteasome impairment. 相似文献
We present a novel all-fiber probe with 710-μm outside diameter for combined optical coherence tomography and pH detection. In cancer surgery, a significant challenge is how to completely remove the malignant tumor without cutting too much normal tissue. The difference between cancer tissue and normal tissue not only lies in morphology and structure but also in tissue pH, where malignant tissue has a lower pH. This dual-modality probe combined optical coherence tomography and pH detection of biological tissue, is expected to determine whether the tissue is cancerous quickly and accurately. The probe utilizes a typical three-segment structure (double-clad fiber - no-core fiber - graded-index fiber). We obtained a lateral resolution of ~10.6 μm, a working distance of ~506 μm and a pH measurement accuracy of 0.01 pH unit for the probe. The performance of the all-fiber probe was verified through an ex vivo experiment using the porcine brain specimen. 相似文献
Analysis of sterol distribution and transport in living cells has been hampered by the lack of bright, photostable fluorescent sterol derivatives that closely resemble cholesterol. In this study, we employed atomistic simulations and experiments to characterize a cholesterol compound with fluorescent boron dipyrromethene difluoride linked to sterol carbon-24 (BODIPY-cholesterol). This probe packed in the membrane and behaved similarly to cholesterol both in normal and in cholesterol-storage disease cells and with trace amounts allowed the visualization of sterol movement in living systems. Upon injection into the yolk sac, BODIPY-cholesterol did not disturb zebrafish development and was targeted to sterol-enriched brain regions in live fish. We conclude that this new probe closely mimics the membrane partitioning and trafficking of cholesterol and, because of its excellent fluorescent properties, enables the direct monitoring of sterol movement by time-lapse imaging using trace amounts of the probe. This is, to our knowledge, the first cholesterol probe that fulfills these prerequisites. 相似文献
Mitochondria are incredibly dynamic organelles that undergo continuous fission and fusion events to control morphology, which profoundly impacts cell physiology including cell cycle progression. This is highlighted by the fact that most major human neurodegenerative diseases are due to specific disruptions in mitochondrial fission or fusion machinery and null alleles of these genes result in embryonic lethality. To gain a better understanding of the pathophysiology of such disorders, tools for the in vivo assessment of mitochondrial dynamics are required. It would be particularly advantageous to simultaneously image mitochondrial fission‐fusion coincident with cell cycle progression. To that end, we have generated a new transgenic reporter mouse, called mito::mKate2 that ubiquitously expresses a mitochondria localized far‐red mKate2 fluorescent protein. Here we show that mito::mKate2 mice are viable and fertile and that mKate2 fluorescence can be spectrally separated from the previously developed Fucci cell cycle reporters. By crossing mito::mKate2 mice to the ROSA26R‐mTmG dual fluorescent Cre reporter line, we also demonstrate the potential utility of mito::mKate2 for genetic mosaic analysis of mitochondrial phenotypes. 相似文献
Various attempts have been made to estimate or measure apoplastic pH over the last few decades. These approaches include pH indicators in agar or beads, measurement of the pH of apoplastic fluid, weak acid influx, ion-selective electrodes and optical probes. Each of these has its own applications and limitations, and has contributed to the understanding of the processes taking place in the apoplast in relation to pH changes. However, convincing methods allowing us to probe this cell compartment are still lacking and invite exploration. The distinction between apoplast components is also discussed to clarify the indiscriminate use of the term `apoplastic pH'. 相似文献
We hypothesized that: (a) S-nitrosylation of metallothionein (MT) is a component of pulmonary endothelial cell nitric oxide (NO) signaling that is associated with an increase in labile zinc; and (b) NO mediated increases in labile zinc in turn reduce the sensitivity of pulmonary endothelium to LPS-induced apoptosis. We used microspectrofluorometric techniques to show that exposing mouse lung endothelial cells (MLEC) to the NO-donor, S-nitrosocysteine, resulted in a 45% increase in fluorescence of the Zn2+-specific fluorophore, Zinquin, that was rapidly reversed by exposure to the Zn2+ chelator, NNNN-tetrakis-(2-pyridylmethyl)ethylenediamine; TPEN). The absence of a NO-mediated increase in labile Zn2+ in MLEC from MT-I and -II knockout mice inferred a critical role for MT in the regulation of Zn2+ homeostasis by NO. Furthermore, we found that prior exposure of cultured endothelial cells from sheep pulmonary artery (SPAEC), to the NO-donor, S-nitroso-N-acetylpenicillamine (SNAP) reduced their sensitivity to lipopolysaccharide (LPS) induced apoptosis. The anti-apoptotic effects of NO were significantly inhibited by Zn2+ chelation with low doses of TPEN (10 M). Collectively, these data suggest that S-nitrosylation of MT is associated with an increase in labile (TPEN chelatable) zinc and NO-mediated MT dependent zinc release is associated with reduced sensitivity to LPS-induced apoptosis in pulmonary endothelium. 相似文献
This is the first report on using green fluorescent protein (GFP) as a pH reporter in plants. Proton fluxes and pH regulation play important roles in plant cellular activity and therefore, it would be extremely helpful to have a plant gene reporter system for rapid, non‐invasive visualization of intracellular pH changes. In order to develop such a system, we constructed three vectors for transient and stable transformation of plant cells with a pH‐sensitive derivative of green fluorescent protein. Using these vectors, transgenic Arabidopsis thaliana and tobacco plants were produced. Here the application of pH‐sensitive GFP technology in plants is described and, for the first time, the visualization of pH gradients between different developmental compartments in intact whole‐root tissues of A. thaliana is reported. The utility of pH‐sensitive GFP in revealing rapid, environmentally induced changes in cytoplasmic pH in roots is also demonstrated. 相似文献
An apoplastic pathway, the so‐called bypass flow, is important for Na+ uptake in rice (Oryza sativa L.) under saline conditions; however, the precise site of entry is not yet known. We report the results of our test of the hypothesis that bypass flow of Na+ in rice occurs at the site where lateral roots emerge from the main roots. We investigated Na+ uptake and bypass flow in lateral rootless mutants (lrt1, lrt2), a crown rootless mutant (crl1), their wild types (Oochikara, Nipponbare and Taichung 65, respectively) and in seedlings of rice cv. IR36. The results showed that shoot Na+ concentration in lrt1, lrt2 and crl1 was lower (by 20–23%) than that of their wild types. In contrast, the bypass flow quantified using trisodium‐8‐hydroxy‐1,3,6‐pyrenetrisulphonic acid (PTS) was significantly increased in the mutants, from an average of 1.1% in the wild types to 3.2% in the mutants. Similarly, bypass flow in shoots of IR36 where the number of lateral and crown roots had been reduced through physical and hormonal manipulations was dramatically increased (from 5.6 to 12.5%) as compared to the controls. The results suggest that the path of bypass flow in rice is not at the sites of lateral root emergence. 相似文献