首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationships between heat production, alternative oxidase(AOX) pathway flux, AOX protein, and carbohydrates during floraldevelopment in Nelumbo nucifera (Gaertn.) were investigated.Three distinct physiological phases were identified: pre-thermogenic,thermogenic, and post-thermogenic. The shift to thermogenicactivity was associated with a rapid, 10-fold increase in AOXprotein. Similarly, a rapid decrease in AOX protein occurredpost-thermogenesis. This synchronicity between AOX protein andthermogenic activity contrasts with other thermogenic plantswhere AOX protein increases some days prior to heating. AOXprotein in thermogenic receptacles was significantly higherthan in post-thermogenic and leaf tissues. Stable oxygen isotopemeasurements confirmed that the increased respiratory flux supportingthermogenesis was largely via the AOX, with little or no contributionfrom the cytochrome oxidase pathway. During the thermogenicphase, no significant relationship was found between AOX proteincontent and either heating or AOX flux, suggesting that regulationis likely to be post-translational. Further, no evidence ofsubstrate limitation was found; starch accumulated during theearly stages of floral development, peaking in thermogenic receptacles,before declining by 89% in post-thermogenic receptacles. Whilstcoarse regulation of AOX flux occurs via protein synthesis,the ability to thermoregulate probably involves precise regulationof AOX protein, most probably by effectors such as -keto acids. Key words: Alternative oxidase, alternative pathway respiration, Nelumbo nucifera, plant thermogenesis, starch Received 11 November 2007; Accepted 28 November 2007  相似文献   

2.
3.
In vivo ubiquinone (UQ) reduction levels were determined in thermogenic stigma and post-thermogenic male stages of spadices of the skunk cabbage, Symplocarpus renifolius. In contrast to Arum maculatum, in which the UQ pool is almost fully reduced during thermogenesis, the reduction levels of UQ9 and UQ10 were not affected by the thermogenic status or developmental stage of individual S. renifolius spadices. Moreover, these levels were controlled within the ranges 40–75% and 35–60%, respectively. These results suggest that the reduction state of the UQ pool per se is not primarily involved in thermoregulation in S. renifolius.  相似文献   

4.
Changes in the mitochondrial electrontransport chain were followed in the thermogenic inflorescence ofSauromatum guttatum Schott from 5d before thermogenesis to 3d thereafter. The capacities of the alternative and cytochrome pathways of mitochondrial electron transport were found to be developmentally coordinated to contribute to the thermogenic events in the appendix and the sterile floral regions. Electron flow through the alternative pathway, is believed primarily responsible for heat production, and this pathway was expressed to the highest degree in both tissues during thermogenesis. In the appendix, the cytochrome chain was shut down considerably during thermogenesis, forcing electron flow through the alternative pathway and thus yielding maximum heat production. The shut-down of the cytochrome chain does not occur in the sterile floral region which may explain why this region is not as thermogenic as the appendix. Cytochrome-oxidase difference spectra indicated that the cytochrome oxidase of appendix mitochondria was not capable of accepting electrons on the day of thermogenesis, and that this capacity was partially restored by the following day even though the tissue was senescing at this time point. Relative levels of messenger RNAs for cytochrome-oxidase subunits I and II were found to decrease the day before thermogenesis, which could result in lower levels of these proteins in appendix mitochondria on the day of thermogenesis. The capacity for overall mitochondrial protein synthesis was also investigated and was found to drop continuously from 5d before thermogenesis to 3d thereafter, even though the capacities of the electron-transport chain were changing dramatically. The levels of mitochondrial ribosomal RNA levels decreased during development, which could explain the overall drop in mitochondrial translational efficiency. Experiments concerning the synthesis of the alternative-oxidase proteins indicated that they were most likely nuclearly encoded, and that their expression could be induced by salicylic acid.  相似文献   

5.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure-function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

6.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure–function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

7.
Taccarum ulei (Araceae, Spathicarpeae) is a seasonal geophytic aroid, native to north‐eastern Brazil, that flowers during two months of the rainy season. Patterns of floral thermogenesis, pollination biology, and floral traits associated with pollination syndromes were studied and compared with those of other Araceae. Two species of cyclocephaline scarabs (Scarabaeidae, Cyclocephalini) were recognized as effective pollinators: Cyclocephala celata and Cyclocephala cearae. Larvae of an unidentified species of fruit fly (Melanoloma spp., Richardiidae, Diptera) were also frequently observed in inflorescences at various maturation stages, feeding on the connectives of male florets and fruits, and thus lowering the reproductive success of individual plants. Beetles were attracted by odoriferous inflorescences in the early evening of the first day of anthesis, during the female phase. The emission of attractive volatiles was coupled with intense thermogenic activity in the entire spadix, unlike other aroids in which only certain zones of the spadix heat up. Pollen release, which marks the beginning of the male phase on the subsequent evening, was not related to floral thermogenesis. Comparative multivariate analysis of the floral traits of T. ulei points to a beetle‐pollinated aroid, although some of the observed traits of the species are not common to other taxa sharing this pollination strategy. Such incongruence might be explained by the evolutionary history of the tribe Spathicarpeae and potential pollinator shifts. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ??, ??–??.  相似文献   

8.
Flowering, pollination ecology, and floral thermogenesis of Caladium bicolor were studied in the Atlantic Rainforest of Pernambuco, NE Brazil. Inflorescences of this species are adapted to the characteristic pollination syndrome performed by Cyclocephalini beetles. They bear nutritious rewards inside well-developed floral chambers and exhibit a thermogenic cycle which is synchronized to the activity period of visiting beetles. Heating intervals of the spadix were observed during consecutive evenings corresponding to the beginning of the female and male phases of anthesis. Highest temperatures were recorded during the longer-lasting female phase. An intense sweet odour was volatized on both evenings. Beetles of a single species, Cyclocephala celata, were attracted to odoriferous inflorescences of C. bicolor and are reported for the first time as Araceae visitors. All the inflorescences visited by C. celata developed into infructescences, whereas unvisited inflorescences showed no fruit development. Findings of previous studies in the Amazon basin of Surinam indicated that Cyclocephala rustica is a likely pollinator of C. bicolor. This leads to the assumption that locally abundant Cyclocephalini species are involved in the pollination of this species.  相似文献   

9.
Ito K  Seymour RS 《Biology letters》2005,1(4):427-430
Thermogenesis, in which cellular respiratory activity is considerably stimulated, requires mitochondrial uncoupling protein (UCP) in mammals and an alternative oxidase (AOX) in plants. Here, we show that the genes for both proteins are expressed in thermogenic plants, but the type correlates with the respiratory substrate. A novel gene termed PsUCPa encoding a variant of UCP was specifically expressed in thermogenic flowers of Philodendron selloum, which uses lipids as substrates. However, a gene termed DvAOX encoding for AOX protein was expressed in thermogenic flowers of Dracunculus vulgaris, which presumably uses carbohydrates as substrates. These findings suggest that cellular metabolism is a major determinant in selective expression of appropriate thermogenic genes in plants.  相似文献   

10.
The presence of two distinct types of adipose tissue, which have opposing functions, has been known for decades. White adipose tissue (WAT) is the main tissue of energy storage, while brown adipose tissue (BAT) dissipates energy as heat and is required for non-shivering thermoregulation. In the last few years, a third type of adipocyte was identified, termed the brite (“brown and white”) or beige adipocyte. Their physiological control and role, however, are not fully clarified. Brite/beige adipocytes have a positive impact on systemic metabolism that is generally explained by the thermogenesis of brite/beige adipocytes; although thermogenesis has not been directly measured but is mostly inferred by gene expression data of typical thermogenic genes such as uncoupling protein 1 (UCP1). Here we critically review functional evidence for the thermogenic potential of brite/beige adipocytes, leading to the conclusion that direct measurements of brite/beige adipocyte bioenergetics, beyond gene regulation, are pivotal to quantify their thermogenic potential. In particular, we exemplified that the massive induction of UCP1 mRNA during the browning of isolated subcutaneous adipocytes in vitro is not reflected in significant alterations of cellular bioenergetics. Herein, we demonstrate that increases in mitochondrial respiration in response to beta-adrenergic stimulus can be independent of UCP1. Using HEK293 cells expressing UCP1, we show how to directly assess UCP1 function by adequate activation in intact cells. Finally, we provide a guide on the interpretation of UCP1 activity and the pitfalls by solely using respiration measurements. The functional analysis of beige adipocyte bioenergetics will assist to delineate the impact of browning on thermogenesis, possibly elucidating additional physiological roles and its contribution to systemic metabolism, highlighting possible avenues for future research. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

11.
12.
杜仲(Eucommia ulmoides)雄花富含多种活性成分和营养成分,具有重要的药用和营养价值。为了揭示杜仲雄蕊原基发育相关基因的表达情况,为杜仲雄花芽发育分子调控机制研究提供理论参考。本文以杜仲良种"华仲11号"( "Huazhong No.11" )为材料,采用lllumina高通量测序技术,分别对苞叶原基分化期和雄蕊原基分化期的花芽进行转录组测序,通过生物信息学对2个发育时期的转录组进行比较分析,筛选出与雄花芽形态发育相关的差异基因。结果显示,转录组测序共获得40.48 Gb过滤数据,各样品的clean reads与杜仲基因组进行序列比对,比对效率为90.56%~93.01%。在2个发育时期筛选出583个差异表达基因,其中在雄蕊原基发育期上调基因315个,下调基因267个。差异基因GO和KEGG功能分析显示,差异基因富集在与生长发育、光周期途径、激素合成和信号传导、碳代谢等相关的生物过程和代谢通路。结果显示光周期途径是杜仲成花诱导的重要途径,同时雄花芽在形态分化过程中受碳水化合物、植物激素和其他代谢物质调控。此外,MADS-box家族成员FLCSOC1、AGL3和AGL8参与杜仲雄蕊器官发育。本研究为杜仲花发育基因调控提供了基础数据,也为雄花用杜仲的分子育种提供了参考。  相似文献   

13.
14.
15.
16.
Symplocarpus renifolius and Arum maculatum are known to produce significant heat during the course of their floral development, but they use different regulatory mechanisms, i.e. homoeothermic compared with transient thermogenesis. To further clarify the molecular basis of species-specific thermogenesis in plants, in the present study we have analysed the native structures and expression patterns of the mitochondrial respiratory components in S. renifolius and A. maculatum. Our comparative analysis using Blue native PAGE combined with nano LC (liquid chromatography)-MS/MS (tandem MS) has revealed that the constituents of the respiratory complexes in both plants were basically similar, but that several mitochondrial components appeared to be differently expressed in their thermogenic organs. Namely, complex II in S. renifolius was detected as a 340?kDa product, suggesting an oligomeric or supramolecular structure in vivo. Moreover, the expression of an external NAD(P)H dehydrogenase was found to be higher in A. maculatum than in S. renifolius, whereas an internal NAD(P)H dehydrogenase was expressed at a similar level in both species. Alternative oxidase was detected as smear-like signals that were elongated on the first dimension with a peak at around 200?kDa in both species. The significance and implication of these data are discussed in terms of thermoregulation in plants.  相似文献   

17.
Bonhomme  F.  Sommer  H.  Bernier  G.  Jacqmard  A. 《Plant molecular biology》1997,34(4):573-582
SaMADS D gene of Sinapis alba was isolated by screening a cDNA library from young inflorescences with a mixture of MADS-box genes of Antirrhinum majus (DEF, GLO, SQUA) as probe. Amino acid sequence comparison showed a high degree of similarity between the SaMADS D and AGL9, DEFH200, TM5, FBP2 and DEFH 72 gene products. Analysis of the SaMADS D gene expression by in situ hybridization reveals a novel expression pattern for a MADS-box gene and suggests a dual function for this gene: first, as a determinant in inflorescence meristem identity since it starts to be expressed directly beneath the inflorescence meristem at the time of initiation of the first floral meristem, is no longer expressed in the inflorescence meristem forced to revert to production of leafy appendages, and is expressed again when the reverted meristem resumes floral meristem initiation, and, second, as an interactor with genes specifying floral organ identity since it is expressed in the floral meristem from the stage of sepal protrusion.  相似文献   

18.
19.
Uncoupling proteins (UCPs) are a family of mitochondrial inner membrane proteins that have been implicated in heat production in mammalian cells. The inflorescences of several members of the arum lily family (Araceae) have also been shown to produce heat during flowering, but the involvement of UCP-mediated heat production in plants is not known. In this work a gene has been isolated termed HmUCPa that encodes for a putative uncoupling protein from Helicodiceros muscivorus, a highly thermogenic arum lily. RT-PCR analysis revealed that the expression of HmUCPa was ubiquitously found, both in thermogenic male florets and appendix, and the non-thermogenic female florets, spathe and club-shaped organs of the spadix. These results suggest that HmUCPa is not primarily involved in organ-specific heat production in H. muscivorus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号