首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
介绍了一种双球形人工模型膜系统.提供了研究跨两个双层膜之间细胞连接重组和通道活性的机会.通常研究通道性质和膜重组所使用的脂质体和板形膜仅仅是一个细胞的双层膜模型,而此系统则为两个相邻细胞间的联接模型.这里报告了该系统的制备和在胞间通道研究中的应用.  相似文献   

2.
生物膜膜蛋白三维结构研究的现状与展望   总被引:2,自引:0,他引:2  
1 生物膜膜蛋白三维结构研究的重要性与迫切性  细胞是生命的基本结构与功能单位 .细胞的外周膜与细胞内的膜系统称为生物膜 .细胞的能量转换、信息识别与传递、物质运送和分配等基本生命现象都与生物膜密切相关 .生物膜是由蛋白质、脂类以及碳水化合物等组成的超分子体系 ,膜蛋白是膜功能的主要体现者 .生物膜膜蛋白可分为外周膜蛋白和内在膜蛋白 ,后者约占整个膜蛋白的 70 %~ 80 % ,它们部分或全部嵌入膜内 ,有的则是跨膜分布 ,如受体、离子通道、离子泵、膜孔、运载体(transporter)以及各种膜酶等等 .象水溶性蛋白质一样 …  相似文献   

3.
生物膜中不同种属微生物的交流与合作   总被引:3,自引:0,他引:3       下载免费PDF全文
自然界中的微生物可附着于载体表面形成高度组织化、系统化的微菌落膜性聚合物, 即生物膜. 与浮游状态的微生物不同, 生物膜中不同种属微生物进行着复杂的交流与合作, 产生“1+1>2”的非线性相互作用, 从而使生物膜在整体上表现出一系列新的生物学特征. 生物膜给人们的生活生产带来很多不利的影响, 如引起顽固性感染性疾病威胁人类健康、破坏输水管道系统导致工业损失等; 但另一方面, 生物膜也可发挥积极作用, 如降解污染物修复环境, 形成生物屏障保护生态等. 如何认识生物膜、如何趋利避害使生物膜造福于人类已成为当今世界多领域关注和研究的重要课题. 从生物膜的形成、代谢产物与信号分子、水平基因转移及其与外界环境的关系等方面对生物膜中交流与合作的研究进展及意义进行了综述, 并提出应从“微生物组学”的高度整体认识生物膜.  相似文献   

4.
本文介绍了一种从水—空气界面的脂单层形成平面双分子脂膜的新装置。它可以控制膜两侧溶液的不同成分;脂双层两边的脂单层具有不同成分;还可使脂双层膜中少带或不带碳氢溶剂,因而其电容性质与生物膜更为接近。我们用它测定了不对称双分子层脂膜的电特性,进行了膜上离子通道性质及脂质体与BLM的融合等的研究。  相似文献   

5.
植物膜水通道蛋白   总被引:14,自引:0,他引:14  
活细胞含有80%以上的水分,水出入细胞和组织是生命代谢的基本过程。长期以来,普遍认为细胞中的水分子以简单的跨膜扩散方式透过脂双层膜。由于在一些研究中发现,生物膜的渗透水通透系数pf(Osmoticwaterpermeabilitycoefficient)远远大于其扩散水通透系数pd(diffusionalwaterpermeabilitycoefficient),因此一些学者推测水分子并不仅以单一的跨膜扩散方式透过生物膜。但是,许多学者对这一看法持不同意见,他们认为水分子在细胞内或细胞间的跨膜扩散速度足以满…  相似文献   

6.
光合细菌生物产氢技术能够将有机废水处理和氢气制备有效结合起来。光合细菌的产氢能力在形成生物膜后变强, 这有利于实现光合细菌的工业化应用。介绍了光合细菌生物膜的形成过程和对光合细菌生物膜形成的模拟研究, 综述了光照、流速、载体等对光合细菌生物膜的形成和产氢性能的影响。借鉴免疫学对生物膜的研究方法和技术, 并深入对光合细菌生物膜形成机理的全面认识, 提高光合细菌生物膜的性能, 是光合细菌生物膜研究的重要方向。  相似文献   

7.
膜蛋白侧向扩散运动的测定   总被引:2,自引:0,他引:2  
根据生物膜流动镶嵌模型,生物膜的基本结构是功能蛋白质分子浮动镶嵌于类脂双分子层中。带有双亲性基团(亲水基和疏水基)的类脂分子在水解质中由于其结构特性可形成有序的溶致近晶相液晶,蛋白质分子嵌于双层膜内,它处于液晶态环境里,具有快速扩散的可能性。在合适的条件下,蛋白质分子在膜中可进行快速的自由旋转扩散和侧向扩散运动。由于  相似文献   

8.
非洲爪蟾卵经钙离子载体A23187激活后,在10,000g下离心得到爪蟾卵提取物,LambdaDNA中入上述提取物可构建出染色质结构,并在染色质表面重建核被膜,同时,在染色质外的区域形成环形片层。核被膜在环形片层有相似的发生途径,它们都是由两类在形态、大小、膜结构上有明显差别的膜泡融合而来,首先是直径200nm的圆形小膜泡相互融合成双层膜片层,同时核孔复合体在双层膜上大量装配;以这些双层膜片层为基  相似文献   

9.
非洲爪蟾卵经钙离子载体A 23187激活后,在10,000g下离心得到爪蟾卵提取物。Lambda DNA加入上述提取物可构建出染色质结构,并在染色质表面重建核被膜,同时在染色质外的区域形成环形片层。核被膜与环形片层有相似的发生途径,它们都是由两类在形态、大小、膜结构上有明显差别的膜泡融合而来。首先是直径200nm的圆形小膜泡相互融合成双层膜片层,同时核孔复合体在双层膜上大量装配,以这些双层膜片层为基础,光滑的大膜泡与之融合导致环形片层的扩张与核被膜的成熟。  相似文献   

10.
余和芬  陈珈 《植物学报》2000,17(2):150-154
脂质体是磷脂在一定条件下在水中形成的由脂质双分子层组成的内部为水相的闭合囊泡。在推动生物膜的研究进展中,它作为模式系统起着非常重要的作用,能用于研究膜蛋白的性质和功能;膜脂和膜蛋白的相互关系;膜的电化学性质等。近年来脂质体重组技术开始引入到植物学研究领域,用于对植物膜蛋白的研究。本文简要介绍了脂质体的制备和脂酶体重组的方法及其在植物生物膜研究中的应用。  相似文献   

11.
Molecular dynamics simulations have become a popular and powerful technique to study lipids and membrane proteins. We present some general questions and issues that should be considered prior to embarking on molecular dynamics simulation studies of membrane proteins and review common simulation methods. We suggest a practical approach to setting up and running simulations of membrane proteins, and introduce two new (related) methods to embed a protein in a lipid bilayer. Both methods rely on placing lipids and the protein(s) on a widely spaced grid and then 'shrinking' the grid until the bilayer with the protein has the desired density, with lipids neatly packed around the protein. When starting from a grid based on a single lipid structure, or several potentially different lipid structures (method 1), the bilayer will start well-packed but requires more equilibration. When starting from a pre-equilibrated bilayer, either pure or mixed, most of the structure of the bilayer stays intact, reducing equilibration time (method 2). The main advantages of these methods are that they minimize equilibration time and can be almost completely automated, nearly eliminating one time consuming step in MD simulations of membrane proteins.  相似文献   

12.
A growing number of important molecular recognition events are being shown to involve the interactions between proteins and glycolipids. Glycolipids are molecules in which one or more monosaccharides are glycosidically linked to a lipid moiety. The lipid moiety is generally buried in the cell membrane or other bilayer, leaving the oligosaccharide moiety exposed but in close proximity to the bilayer surface. This presents a unique environment for protein–carbohydrate interactions, and studies to determine the influence of the bilayer on these phenomena are in their infancy. One important property of the bilayer is the ability to orient and cluster glycolipid species, as strong interactions in biological systems are often achieved through multivalency arising from the simultaneous association of two or more proteins and receptors. This is especially true of protein–carbohydrate binding because of the unusually low affinities that characterize the monovalent interactions. More recent studies have also shown that the composition of the lipid bilayer is a critical parameter in protein–glycolipid recognition. The fluidity of the bilayer allows for correct geometric positioning of the oligosaccharide head group relative to the binding sites on the protein. In addition, there are activity‐based and structural data demonstrating the impact of the bilayer microenvironment on the modulation of oligosaccharide presentation. The use of model membranes in biosensor‐based methods has supplied decisive evidence of the importance of the membrane in receptor presentation. These data can be correlated with three‐dimensional structural information from X‐ray <?tw=98%>crystallography, NMR, and molecular mechanics to provide insight into specific protein–carbohydrate inter‐­actions at the bilayer. Copyright © 1999 National Research Council Canada and John Wiley & Sons, Ltd.  相似文献   

13.
The folding mechanisms of integral membrane proteins have largely eluded detailed study. This is owing to the inherent difficulties in folding these hydrophobic proteins in vitro, which, in turn, reflects the often apparently insurmountable problem of mimicking the natural membrane bilayer with lipid or detergent mixtures. There is, however, a large body of information on lipid properties and, in particular, on phosphatidylcholine and phosphatidylethanolamine lipids, which are common to many biological membranes. We have exploited this knowledge to develop efficient in vitro lipid-bilayer folding systems for the membrane protein, bacteriorhodopsin. Furthermore, we have shown that a rate-limiting apoprotein folding step and the overall folding efficiency appear to be controlled by particular properties of the lipid bilayer. The properties of interest are the stored curvature elastic energy within the bilayer, and the lateral pressure that the lipid chains exert on the their neighbouring folding proteins. These are generic properties of the bilayer that can be achieved with simple mixtures of biological lipids, and are not specific to the lipids studied here. These bilayer properties also seem to be important in modulating the function of several membrane proteins, as well as the function of membranes in vivo. Thus, it seems likely that careful manipulations of lipid properties will shed light on the forces that drive membrane protein folding, and will aid the development of bilayer folding systems for other membrane proteins.  相似文献   

14.
Mechanical stimuli acting on the cellular membrane are linked to intracellular signaling events and downstream effectors via different mechanoreceptors. Mechanosensitive (MS) ion channels are the fastest known primary mechano-electrical transducers, which convert mechanical stimuli into meaningful intracellular signals on a submillisecond time scale. Much of our understanding of the biophysical principles that underlie and regulate conversion of mechanical force into conformational changes in MS channels comes from studies based on MS channel reconstitution into lipid bilayers. The bilayer reconstitution methods have enabled researchers to investigate the structure-function relationship in MS channels and probe their specific interactions with their membrane lipid environment. This brief review focuses on close interactions between MS channels and the lipid bilayer and emphasizes the central role that the transbilayer pressure profile plays in mechanosensitivity and gating of these fascinating membrane proteins.  相似文献   

15.
Recently, several indications have been found that suggest a preferential interaction between cholesterol and tryptophan residues located near the membrane-water interface. The aim of this study was to investigate by direct methods how tryptophan and cholesterol interact with each other and what the possible consequences are for membrane organization. For this purpose, we used cholesterol-containing model membranes of dimyristoylphosphatidylcholine (DMPC) in which a transmembrane model peptide with flanking tryptophans [acetyl-GWW(LA)8LWWA-amide], called WALP23, was incorporated to mimic interfacial tryptophans of membrane proteins. These model systems were studied with two complementary methods. (1) Steady-state and time-resolved F?rster resonance energy transfer (FRET) experiments employing the fluorescent cholesterol analogue dehydroergosterol (DHE) in combination with a competition experiment with cholesterol were used to obtain information about the distribution of cholesterol in the bilayer in the presence of WALP23. The results were consistent with a random distribution of cholesterol which indicates that cholesterol and interfacial tryptophans are not preferentially located next to each other in these bilayer systems. (2) Solid-state 2H NMR experiments employing either deuterated cholesterol or indole ring-deuterated WALP23 peptides were performed to study the orientation and dynamics of both molecules. The results showed that the quadrupolar splittings of labeled cholesterol were not affected by an interaction with tryptophan-flanked peptides and, vice versa, that the quadrupolar splittings of labeled indole rings in WALP23 are not significantly influenced by addition of cholesterol to the bilayer. Therefore, both NMR and fluorescence spectroscopy results independently show that, at least in the model systems studied here, there is no evidence for a preferential interaction between cholesterol and tryptophans located at the bilayer interface.  相似文献   

16.
In many cellular functions the process of membrane fusion is of vital importance. It occurs in a highly specific and strictly controlled fashion. Proteins are likely to play a key role in the induction and modulation of membrane fusion reactions. Aimed at providing insight into the molecular mechanisms of membrane fusion, numerous studies have been carried out on model membrane systems. For example, the divalent-cation induced aggregation and fusion of vesicles consisting of negatively charged phospholipids, such as phosphatidylserine (PS) or cardiolipin (CL), have been characterized in detail. It is important to note that these systems largely lack specificity and control. Therefore conclusions derived from their investigation can not be extrapolated directly to a seemingly comparable counterpart in biology. Yet, the study of model membrane systems does reveal the general requirements of lipid bilayer fusion. The most prominent barrier to molecular contact between two apposing bilayers appears to be due to the hydration of the polar groups of the lipid molecules. Thus, dehydration of the bilayer surface and fluctuations in lipid packing, allowing direct hydrophobic interactions, are critical to the induction of membrane fusion. These membrane alterations are likely to occur only locally, at the site of intermembrane contact. Current views on the way membrane proteins may induce fusion under physiological conditions also emphasize the notion of local surface dehydration and perturbation of lipid packing, possibly through penetration of apolar amino acid segments into the hydrophobic membrane interior.  相似文献   

17.
Molecular dynamics (MD) simulations provide a valuable approach to the dynamics, structure, and stability of membrane-protein systems. Coarse-grained (CG) models, in which small groups of atoms are treated as single particles, enable extended (>100 ns) timescales to be addressed. In this study, we explore how CG-MD methods that have been developed for detergents and lipids may be extended to membrane proteins. In particular, CG-MD simulations of a number of membrane peptides and proteins are used to characterize their interactions with lipid bilayers. CG-MD is used to simulate the insertion of synthetic model membrane peptides (WALPs and LS3) into a lipid (PC) bilayer. WALP peptides insert in a transmembrane orientation, whilst the LS3 peptide adopts an interfacial location, both in agreement with experimental biophysical data. This approach is extended to a transmembrane fragment of the Vpu protein from HIV-1, and to the coat protein from fd phage. Again, simulated protein/membrane interactions are in good agreement with solid state NMR data for these proteins. CG-MD has also been applied to an M3-M4 fragment from the CFTR protein. Simulations of CFTR M3-M4 in a detergent micelle reveal formation of an alpha-helical hairpin, consistent with a variety of biophysical data. In an I231D mutant, the M3-M4 hairpin is additionally stabilized via an inter-helix Q207/D231 interaction. Finally, CG-MD simulations are extended to a more complex membrane protein, the bacterial sugar transporter LacY. Comparison of a 200 ns CG-MD simulation of LacY in a DPPC bilayer with a 50 ns atomistic simulation of the same protein in a DMPC bilayer shows that the two methods yield comparable predictions of lipid-protein interactions. Taken together, these results demonstrate the utility of CG-MD simulations for studies of membrane/protein interactions.  相似文献   

18.
B Mitra  G G Hammes 《Biochemistry》1990,29(42):9879-9884
The spatial relationship of specific sites on chloroplast coupling factor, reconstituted in asolectin vesicles, to the bilayer surface has been studied with fluorescence methods. Fluorescence resonance energy transfer measurements have been used to map the distances of closest approach of the N,N'-dicyclohexylcarbodiimide-binding site and the disulfide on the gamma-polypeptide to the bilayer center. The dicyclohexylcarbodiimide site was labeled with N-cyclohexyl-N'-pyrenylcarbodiimide and the gamma-disulfide site with a coumarinyl derivative. The bilayer center was labeled with 25-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)-N-methylamino]-27-norc holesterol. The distances obtained, 15 and 43 A, respectively, were combined with previous measurements of the distance of closest approach between these sites and the membrane surface to estimate the perpendicular distances of the sites from the membrane surface. The depth of the dicyclohexylcarbodiimide site was also determined by studying the quenching of fluorescence by 5-, 7-, 12-, and 16-doxylstearic acids. The model developed suggests that the dicyclohexylcarbodiimide site is 6-10 A below the membrane surface and the gamma-disulfide is 16 A above the membrane surface. The distances measured are subject to a considerable uncertainty, but the proposed model provides a useful starting point for further structural studies.  相似文献   

19.
Five molecular dynamics computer simulations were performed on different phospholipid:sterol membrane systems in order to study the influence of sterol structure on membrane properties. Three of these simulated bilayer systems were composed of a 1:8 sterol:phospholipid ratio, each of which employed one of the sterol molecules: cholesterol, ergosterol, and lanosterol. The two other simulations were of a bilayer with a 1:1 sterol:phospholipid ratio. These simulations employed cholesterol and lanosterol, respectively, as their sterol components. The observed differences in simulations with cholesterol and lanosterol may have their implication on the form of the phospholipid/sterol phase diagram.  相似文献   

20.
The membrane bilayer has a significant influence over the proteins embedded within it. G protein-coupled receptors (GPCRs) form a large group of membrane proteins with a vast array of critical functions, and direct and indirect interactions with the bilayer are thought to control various essential aspects of receptor function. The presence of cholesterol, in particular, has been the focus of a number of recent studies, with varying receptor-dependent effects reported. However, the possibility of specific cholesterol binding sites on GPCRs remains debatable at present. A deeper structural and mechanistic understanding of the complex and delicately balanced nature of GPCR-bilayer interactions has only been revealed so far in studies with the non-ligand binding, class A GPCR, rhodopsin. Further investigations are essential if we are to appreciate fully the role of the bilayer composition in GPCR activation and signalling; indeed, recent improvements in GPCR expression and purification, along with development of novel reconstitution methods should make these types of biophysical investigations much more accessible. In this review we highlight the latest research on GPCR-membrane interactions and some of the tools available for more detailed studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号