首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) is caused by the cerebral deposition of beta-amyloid (Abeta), a 38-43-amino acid peptide derived by proteolytic cleavage of the amyloid precursor protein (APP). Initial studies indicated that final cleavage of APP by the gamma-secretase (a complex containing presenilin and nicastrin) to produce Abeta occurred in the endosomal/lysosomal system. However, other studies showing a predominant endoplasmic reticulum localization of the gamma-secretase proteins and a neutral pH optimum of in vitro gamma-secretase assays have challenged this conclusion. We have recently identified nicastrin as a major lysosomal membrane protein. In the present work, we use Western blotting and immunogold electron microscopy to demonstrate that significant amounts of mature nicastrin, presenilin-1, and APP are co-localized with lysosomal associated membrane protein-1 (cAMP-1) in the outer membranes of lysosomes. Furthermore, we demonstrate that these membranes contain an acidic gamma-secretase activity, which is immunoprecipitable with an antibody to nicastrin. These experiments establish APP, nicastrin, and presenilin-1 as resident lysosomal membrane proteins and indicate that gamma-secretase is a lysosomal protease. These data reassert the importance of the lysosomal/endosomal system in the generation of Abeta and suggest a role for lysosomes in the pathophysiology of AD.  相似文献   

2.
3.
The glycoprotein nicastrin (NCT) is an essential component of the gamma-secretase complex, a high molecular weight complex which also contains the presenilin proteins, Aph-1 and Pen-2. The gamma-secretase complex is not only involved in APP processing but also in the processing of an increasing number of other type I integral membrane proteins. As the largest subunit of the gamma-secretase complex, NCT plays a crucial role in its activation. Considerable information exists on the distribution, structure and function of NCT; however, little is known of its proteolysis. The present study is aimed at exploring the molecular mechanism of NCT degradation. We found that either proteasomal or lysosomal inhibition can significantly increase the levels of both endogenous and exogenous NCT in various cell lines, and the effect of these inhibitions on NCT was time- and dose-dependent. Immunofluorescent microscopic analysis revealed that NCT accumulates in the ER and Golgi apparatus after proteasomal inhibition, while lysosomal inhibition leads to the accumulation of NCT in the lysosomal apparatus. Co-immunoprecipitation can pull down both NCT and ubiquitin. Taken together, our results demonstrate that NCT degradation involves both the proteasome and the lysosome.  相似文献   

4.
The presenilin proteins are required for intramembrane cleavage of a subset of type 1 membrane proteins including the Alzheimer's disease amyloid precursor protein. Previous studies indicate presenilin proteins form enzymatically active high molecular mass complexes consisting of heterodimers of N- and C-terminal fragments in association with nicastrin, presenilin enhancer-2 and anterior pharynx defective-1 proteins. Using Blue Native gel electrophoresis (BN/PAGE) we have studied endogenous presenilin 1 complex mass, stability and association with nicastrin, presenilin enhancer-2 and anterior pharynx defective-1. Solubilization of mouse or human brain membranes with dodecyl-d-maltoside produced a 360-kDa species reactive with antibodies to presenilin 1. Presenilin 1 complex levels were high in embryonic brain. Complex integrity was sensitive to Triton X-100 and SDS, but stable to reducing agent. Addition of 5 M urea caused complex dissolution and nicastrin to migrate as a subcomplex. Nicastrin and presenilin enhancer-2 were detected in the presenilin 1 complex following BN/PAGE, electroelution and second-dimension analysis. Anterior pharynx defective-1 was detected as an 18-kDa form and 9-kDa C-terminal fragment by standard SDS/PAGE of mouse tissues, and as a predominant 36-kDa band after presenilin 1 complex second-dimension analysis. Membranes from brain cortex of Alzheimer's disease patients, or from cases with presenilin 1 missense mutations, indicated no change in presenilin 1 complex mobility. Higher molecular mass presenilin 1-reactive species were detected in brain containing presenilin 1 exon 9 deletion mutation. This abnormality was confirmed using cells transfected with the same presenilin deletion mutation.  相似文献   

5.
Active gamma-secretase complexes contain only one of each component   总被引:2,自引:0,他引:2  
Gamma-secretase is an intramembrane aspartyl protease complex that cleaves type I integral membrane proteins, including the amyloid beta-protein precursor and the Notch receptor, and is composed of presenilin, Pen-2, nicastrin, and Aph-1. Although all four of these membrane proteins are essential for assembly and activity, the stoichiometry of the complex is unknown, with the number of presenilin molecules present being especially controversial. Here we analyze functional gamma-secretase complexes, isolated by immunoprecipitation from solubilized membrane fractions and able to produce amyloid beta-peptides and amyloid beta-protein precursor intracellular domain. We show that the active isolated protease contains only one presenilin per complex, which excludes certain models of the active site that require aspartate dyads formed between two presenilin molecules. We also quantified components in the isolated complexes by Western blot using protein standards and found that the amounts of Pen-2 and nicastrin were the same as that of presenilin. Moreover, we found that one Aph-1 was not co-immunoprecipitated with another in active complexes, evidence that Aph-1 is likewise present as a monomer. Taken together, these results demonstrate that the stoichiometry of gamma-components presenilin:Pen-2:nicastrin:Aph-1 is 1:1:1:1.  相似文献   

6.
Lee SF  Shah S  Li H  Yu C  Han W  Yu G 《The Journal of biological chemistry》2002,277(47):45013-45019
Presenilin and nicastrin are essential components of the gamma-secretase complex that is required for the intramembrane proteolysis of an increasing number of membrane proteins including the amyloid-beta precursor protein (APP) and Notch. By using co-immunoprecipitation and nickel affinity pull-down approaches, we now show that mammalian APH-1 (mAPH-1), a conserved multipass membrane protein, physically associates with nicastrin and the heterodimers of the presenilin amino- and carboxyl-terminal fragments in human cell lines and in rat brain. Similar to the loss of presenilin or nicastrin, the inactivation of endogenous mAPH-1 using small interfering RNAs results in the decrease of presenilin levels, accumulation of gamma-secretase substrates (APP carboxyl-terminal fragments), and reduction of gamma-secretase products (amyloid-beta peptides and the intracellular domains of APP and Notch). These data indicate that mAPH-1 is probably a functional component of the gamma-secretase complex required for the intramembrane proteolysis of APP and Notch.  相似文献   

7.
APH-1 and PEN-2 genes modulate the function of nicastrin and the presenilins in Caenorhabditis elegans. Preliminary studies in transfected mammalian cells overexpressing tagged APH-1 proteins suggest that this genetic interaction is mediated by a direct physical interaction. Using the APH-1 protein encoded on human chromosome 1 (APH-1(1)L; also known as APH-1a) as an archetype, we report here that endogenous forms of APH-1 are predominantly expressed in intracellular membrane compartments, including the endoplasmic reticulum and cis-Golgi. APH-1 proteins directly interact with immature and mature forms of the presenilins and nicastrin within high molecular weight complexes that display gamma- and epsilon-secretase activity. Indeed APH-1 proteins can bind to the nicastrin delta312-369 loss of function mutant, which does not undergo glycosylation maturation and is not trafficking beyond the endoplasmic reticulum. The levels of expression of endogenous APH-1(1)L can be suppressed by overexpression of any other members of the APH-1 family, suggesting that their abundance is coordinately regulated. Finally, although the absence of APH-1 destabilizes the presenilins, in contrast to nicastrin and PEN-2, APH-1 itself is only modestly destabilized in cells lacking functional expression of presenilin 1 or presenilin 2. Taken together, our data suggest that APH-1 proteins, and APH-1(1) in particular, may have a role in the initial assembly and maturation of presenilin.nicastrin complexes.  相似文献   

8.
The gamma-secretase complex, consisting of presenilin, nicastrin, presenilin enhancer-2 (PEN-2), and anterior pharynx defective-1 (APH-1) cleaves type I integral membrane proteins like amyloid precursor protein and Notch in a process of regulated intramembrane proteolysis. The regulatory mechanisms governing the multistep assembly of this "proteasome of the membrane" are unknown. We characterize a new interaction partner of nicastrin, the retrieval receptor Rer1p. Rer1p binds preferentially immature nicastrin via polar residues within its transmembrane domain that are also critical for interaction with APH-1. Absence of APH-1 substantially increased binding of nicastrin to Rer1p, demonstrating the competitive nature of these interactions. Moreover, Rer1p expression levels control the formation of gamma-secretase subcomplexes and, concomitantly, total cellular gamma-secretase activity. We identify Rer1p as a novel limiting factor that negatively regulates gamma-secretase complex assembly by competing with APH-1 during active recycling between the endoplasmic reticulum (ER) and Golgi. We conclude that total cellular gamma-secretase activity is restrained by a secondary ER control system that provides a potential therapeutic value.  相似文献   

9.
The gamma-secretase complex is an unusual multimeric protease responsible for the intramembrane cleavage of a variety of type 1 transmembrane proteins, including the beta-amyloid precursor protein and Notch. Genetic and biochemical data have revealed that this protease consists of the presenilin heterodimer, a highly glycosylated form of nicastrin, and the recently identified gene products, Aph-1 and Pen-2. Whereas current evidence supports the notion that presenilin comprises the active site of the protease and that the other three components are members of the active complex required for proteolytic activity, the individual roles of the three co-factors remain unclear. Here, we demonstrate that endogenous Aph-1 interacts with an immature species of nicastrin, forming a stable intermediate early in the assembly of the gamma-secretase complex, prior to the addition of presenilin and Pen-2. Our data suggest 1) that Aph-1 is involved in the early stages of gamma-secretase assembly through the stabilization and perhaps glycosylation of nicastrin and by scaffolding nicastrin to the immature gamma-secretase complex, and 2) that presenilin, and later Pen-2, bind to this intermediate during the formation of the mature protease.  相似文献   

10.
The multipass membrane protein APH-1, found in the gamma-secretase complex together with presenilin, nicastrin, and PEN-2, is essential for Notch signaling in Caenorhabditis elegans embryos and is required for intramembrane proteolysis of Notch and beta-amyloid precursor protein in mammalian and Drosophila cells. In C. elegans, a mutation of the conserved transmembrane Gly123 in APH-1 (mutant or28) leads to a notch/glp-1 loss-of-function phenotype. In this study, we show that the corresponding mutation in mammalian APH-1aL (G122D) disrupts the physical interaction of APH-1aL with hypoglycosylated immature nicastrin and the presenilin holoprotein as well as with mature nicastrin, presenilin, and PEN-2. The G122D mutation also reduced gamma-secretase activity in intramembrane proteolysis of membrane-tethered Notch. Moreover, we found that the conserved transmembrane Gly122, Gly126, and Gly130 in the fourth transmembrane region of mammalian APH-1aL are part of the membrane helix-helix interaction GXXXG motif and are essential for the stable association of APH-1aL with presenilin, nicastrin, and PEN-2. These findings suggest that APH-1 plays a GXXXG-dependent scaffolding role in both the initial assembly and subsequent maturation and maintenance of the active gamma-secretase complex.  相似文献   

11.
Gamma-secretase cleaves type I transmembrane proteins, including beta-amyloid precursor protein and Notch, and requires the formation of a protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2 for its activity. Aph-1 is implicated in the stabilization of this complex, although its precise mechanistic role remains unknown. Substitution of the first glycine within the transmembrane GXXXG motif of Aph-1 causes a loss-of-function phenotype in Caenorhabditis elegans. Here, using an untranslated region-targeted RNA interference/rescue strategy in Drosophila Schneider 2 cells, we show that Aph-1 contributes to the assembly of the gamma-secretase complex by multiple mechanisms involving intermolecular and intramolecular interactions depending on or independent of the conserved glycines. Aph-1 binds to nicastrin forming an early subcomplex independent of the conserved glycines within the endoplasmic reticulum. Certain mutations in the conserved GXXXG motif affect the interaction of the Aph-1.nicastrin subcomplex with presenilin that mediates trafficking of the presenilin.Aph-1.nicastrin tripartite complex to the Golgi. The same mutations decrease the stability of Aph-1 polypeptides themselves, possibly by affecting intramolecular associations through the transmembrane domains. Our data suggest that the proper assembly of the Aph-1.nicastrin subcomplex with presenilin is the prerequisite for the trafficking as well as the enzymatic activity of the gamma-secretase complex and that Aph-1 functions as a stabilizing scaffold in the assembly of this complex.  相似文献   

12.
Gamma-secretase is a membrane protease complex that possesses presenilin as a catalytic subunit. Presenilin generates amyloid beta peptides in the brains of Alzheimer's patients and is indispensable to Notch signaling in tissue development and renewal. Recent studies have revealed how presenilin is assembled with its cofactor proteins and acquires the gamma-secretase activity: Aph-1 and nicastrin initially form a subcomplex to bind and stabilize presenilin, and then Pen-2 confers the gamma-secretase activity and facilitates endoproteolysis of presenilin. Understanding the mechanism of gamma-secretase cleavage will help to clarify how intercellular cell signaling through transmembrane proteins is regulated by intramembrane proteolysis, and will hopefully eventually lead to a cure for Alzheimer's disease.  相似文献   

13.
Several type I integral membrane proteins, such as the Notch receptor or the amyloid precursor protein, are cleaved in their intramembrane domain by a gamma-secretase enzyme, which is carried within a multiprotein complex. These cleavages generate molecules that are involved in intracellular or extracellular signaling. At least four transmembrane proteins belong to the gamma-secretase complex: presenilin, nicastrin, Aph-1, and Pen-2. It is still unclear whether these proteins are the only components of the complex and whether a unique complex is involved in the different gamma-secretase cleavage events. We have set up a genetic screen based on the permanent acquisition or loss of an antibiotic resistance depending on the presence of an active gamma-secretase able to cleave a Notch-derived substrate. We selected clones deficient in gamma-secretase activity using this screen on mammalian cells after random mutagenesis. We further analyzed two of these clones and identified previously undescribed mutations in the nicastrin gene. The first mutation abolishes nicastrin production, and the second mutation, a point mutation in the ectodomain, abolishes nicastrin maturation. In both cases, gamma-secretase activity on Notch and APP is impaired.  相似文献   

14.
The presenilin genes were first identified as the site of missense mutations causing early onset autosomal dominant familial Alzheimer's disease. Subsequent work has shown that the presenilin proteins are the catalytic subunits of a hetero-tetrameric complex containing APH1, nicastrin and PEN-2. This complex (variously termed presenilin complex or gamma-secretase complex) performs an unusual type of proteolysis in which the transmembrane domains of Type I proteins are cleaved within the hydrophobic compartment of the membrane. This review describes some of the molecular and structural biology of this unusual enzyme complex. The presenilin complex is a bilobed structure. The head domain contains the ectodomain of nicastrin. The base domain contains a central cavity with a lateral cleft that likely provides the route for access of the substrate to the catalytic cavity within the centre of the base domain. There are reciprocal allosteric interactions between various sites in the complex that affect its function. For instance, binding of Compound E, a peptidomimetic inhibitor to the PS1 N-terminus, induces significant conformational changes that reduces substrate binding at the initial substrate docking site, and thus inhibits substrate cleavage. However, there is a reciprocal allosteric interaction between these sites such that prior binding of the substrate to the initial docking site paradoxically increases the binding of the Compound E peptidomimetic inhibitor. Such reciprocal interactions are likely to form the basis of a gating mechanism that underlies access of substrate to the catalytic site. An increasingly detailed understanding of the structural biology of the presenilin complex is an essential step towards rational design of substrate- and/or cleavage site-specific modulators of presenilin complex function.  相似文献   

15.
APH-1, presenilin, nicastrin, and Pen-2 are proteins with varying membrane topologies that compose the gamma-secretase complex, which is responsible for the intramembrane proteolysis of several substrates including the amyloid precursor protein. APH-1 is known to be necessary for gamma-secretase activity, but its precise function in the complex is not fully understood, and its membrane topology has not been described, although it is predicted to traverse the membrane seven times. To investigate this, we used selective permeabilization of the plasma membrane and immunofluorescence microscopy to show that the C terminus of the APH-1 resides in the cytosolic space. Insertion of N-linked glycosylation sites into each of the hydrophilic loop domains and the N terminus of APH-1 showed that the N-terminal domain as well as loops 2, 4, and 6 could be glycosylated, whereas loops 1, 3, and 5 were not. Thus, APH-1 topologically resembles a seven-transmembrane domain receptor with the N terminus and even-numbered loops facing the endoplasmic reticulum lumen, and the C terminus and odd-numbered loops reside in the cytosolic space. By using these glycosylation mutants, we provide evidence that the association between nicastrin and APH-1 may occur very soon after APH-1 synthesis and that the interaction between these two proteins may rely more heavily on the transmembrane domains of APH-1 than on the loop domains. Furthermore, we found that APH-1 can be processed by several endoproteolytic events. One of these cleavages is strongly up-regulated by co-expression of nicastrin and generates a stable C-terminal fragment that associates with nicastrin.  相似文献   

16.
Nicastrin was the first binding partner of presenilin (PS) shown to be a critical component of the presenilin/gamma-secretase complex essential in development and differentiation, and in generation of Alzheimer's disease Abeta amyloid peptide. To investigate the function of this glycoprotein, we compared nicastrin and presenilin protein expression in various mouse tissues. Western blot analysis of PS1, PS2 and nicastrin indicates their expression levels are not coordinated. In adult mouse, nicastrin is highly expressed in muscle membranes, whereas presenilin levels are very low. By Blue Native electrophoresis, a PS1 complex of 400 kDa was detected in lung, brain, thymus and heart; nicastrin was also detected as a 400-kDa complex in brain but in muscle it was detected with a complex mobility of 240 and 290 kDa, suggesting association with alternate protein complexes. Immunocytochemistry confirms strong intracellular expression of nicastrin in skeletal muscle and blood vessel smooth muscle. These findings suggest a function for nicastrin in muscle other than participation in the gamma-secretase complex.  相似文献   

17.
The gamma-secretase complex catalyzes intramembrane proteolysis of a number of transmembrane proteins, including amyloid precursor protein, Notch, ErbB4, and E-cadherin. gamma-Secretase is known to contain four major protein constituents: presenilin (PS), nicastrin, Aph-1, and Pen-2, all of which are integral membrane proteins. There is increasing evidence that the formation of the complex and the stability of the individual components are tightly controlled in the cell, assuring correct composition of functional complexes. In this report, we investigate the topology, localization, and mechanism for destabilization of Pen-2 in relation to PS function. We show that PS1 regulates the subcellular localization of Pen-2: in the absence of PS, Pen-2 is sequestered in the endoplasmic reticulum (ER) and not transported to post-ER compartments, where the mature gamma-secretase complexes reside. PS deficiency also leads to destabilization of Pen-2, which is alleviated by proteasome inhibitors. In keeping with this, we show that Pen-2, which adopts a hairpin structure with the N and C termini facing the luminal space, is ubiquitylated prior to degradation and presumably retrotranslocated from the ER to the cytoplasm. Collectively, our data suggest that failure to become incorporated into the gamma-secretase complex leads to degradation of Pen-2 through the ER-associated degradation-proteasome pathway.  相似文献   

18.
Morais VA  Leight S  Pijak DS  Lee VM  Costa J 《FEBS letters》2008,582(3):427-433
The gamma-secretase complex, composed by presenilin, nicastrin, APH-1 and PEN-2, is involved in intramembranous proteolysis of membrane proteins, such as amyloid precursor protein or Notch. Cleavage occurs in multiple cellular compartments. Here, nicastrin mutants containing targeting signals to the endoplasmic reticulum, trans-Golgi network, lysosomes, or plasma membrane have been shown to yield active gamma-secretase complexes with different activities and specificities: wild-type and plasma membrane nicastrin complexes yielded the highest amounts of secreted amyloid-beta peptide (Abeta), predominantly Abeta40, whereas intracellular targeted mutants produced intracellular Abeta, with a comparatively higher amount of Abeta42. These results suggest that compartmental microenvironments play a role in gamma-secretase activity and specificity.  相似文献   

19.
Gamma-secretase catalyzes intramembraneous proteolysis of several type I transmembrane proteins, including beta-amyloid precursor protein (APP), to generate amyloid beta protein (Abeta), a key player in the pathogenesis of Alzheimer's disease (AD). The critical components of the gamma-secretase complex include presenilin (PS), nicastrin (NCT), presenilin enhancer-2 (PEN-2) and anterior pharynx defective-1 (APH-1). Abnormalities of the ubiquitin-proteasome pathway have been implicated in the pathogenesis of AD; while PS and PEN-2 turnover is regulated by this pathway, it is unknown whether the ubiquitin-proteasome pathway is also involved in the degradation of APH-1 protein. In this study, we found that the expression of endogenous and exogenous APH-1 significantly increased in cells treated with proteasome-specific inhibitors. The effect of the proteasome inhibitors on APH-1 was dose- and time-dependent. APH-1 protein was ubiquitinated. Pulse-chase metabolic labeling experiments showed that the degradation of newly synthesized radiolabeled APH-1 proteins was inhibited by lactacystin. Disruption of the PS1 and PS2 genes did not affect the degradation of APH-1 by the ubiquitin-proteasome pathway. Furthermore, over-expression of APH-1 and inhibition of proteasomal APH-1 degradation facilitated gamma-secretase cleavage of APP to generate Abeta. These results demonstrate that the degradation of APH-1 protein is mediated by the ubiquitin-proteasome pathway.  相似文献   

20.
The transmembrane glycoprotein nicastrin is a component of presenilin (PS) protein complex that is involved in γ-cleavage of βAPP and site-3 cleavage of Notch. PS undergoes endoproteolysis, and the proteolytic fragments are incorporated into the high molecular weight protein complexes that are highly stabilized. Here we show that Endo H-resistant, N-glycosylated form of nicastrin (p150-NCT) is highly stabilized and selectively bound to PS fragments. Moreover, loss-of-function mutations of nicastrin inhibited formation of fully glycosylated p150-NCT as well as stabilization of nicastrin, suggesting that glycosylation and stabilization of nicastrin polypeptides are tightly correlated with its function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号