首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Curtobacterium pusillum contains 11-cyclohexylundecanoic acid as a major component of cellular fatty acids. A trace amount of 13-cyclohexyltridecanoic acid is also present. Fatty acids other than omega-cyclohexyl fatty acids present are 13-methyltetradecanoic, 12-methyltetradecanoic, n-pentadecanoic, 14-methylpentadecanoic, 13-methylpentadecanoic, n-hexadecanoic, 15-methylhexadecanoic, 14-methylhexadecanoic, and n-heptadecanoic acids. The fatty acid synthetase system of this bacterium was studied. Various 14C-labeled precursors were added to the growth medium and the incorporation of radioactivity into cellular fatty acids was analyzed. Sodium [14C]acetate and [14C]glucose were incorporated into almost all species of cellular fatty acids, the incorporation into 11-cyclohexylundecanoic acid being predominant. [14C]Isoleucine was incorporated into 12-methyltetradecanoic and 14-methylhexadecanoic acids: [14C]leucine into 13-methyltetradecanoic and 15-methylhexadecanoic acids; and [14C]valine into 14-methylpentadecanoic acid. [14C]-Shikimic acid was incorporated almost exclusively into omega-cyclohexyl fatty acids. The fatty acid synthetase activity of the crude enzyme preparation of C. pusillum was reconstituted on the addition of acyl carrier protein. This synthetase system required NADPH and preferentially utilized cyclohexanecarbonyl-CoA as a primer. The system was also able to use branched- and straight-chain acyl-CoAs with 4 to 6 carbon atoms effectively as primers but was unable to use acetyl-CoA. However, if acetyl acyl carrier protein was used as the priming substrate, the system produced straight-chain fatty acids. The results imply that the specificity of the initial acyl-CoA:acyl carrier protein acyltransferase dictates the structure of fatty acids synthesized and that the enzymes catalyzing the subsequent chain-elongation reactions do not have the same specificity restriction.  相似文献   

2.
Positional isomers of hexadecenoic aud octadecenoic acids of human adipose tissue have been separated by gas-liquid chromatography and their amounts determined by oxidative cleavage (MnO(4) and IO(4)). The following isomeric octadecenoic acids were present: 7-octadecenoic acid (0.4%), 8- (1.9%), 9- (73.0%), 10- (2.5%), 11- (19.0%) and 12- (3.2%). The hexadecenoic acids have also been shown to be a mixture of positional isomers, in which the cis-9-isomer predominates. 10-Hexadecenoic and 12-octadecenoic acids could conceivably be precursors of linoleic acid. The following branched fatty acids have also been determined in human depot fat: 13-methyltetradecanoic, 12-methyltetradecanoic, 14-methylpentadecanoic, 14-methylhexadecanoic, and 16-methylheptadecanoic acid. They were present in percentages of 0.02-0.6% and their identification rests solely on comparison of their gas-liquid chromatographic retention times with those of synthetic compounds.  相似文献   

3.
The signals of fatty acids in the form of triglycerides were observed in the 13C NMR spectrum of an intact soybean seed. The major fatty acid component composition of triglycerides in a soybean seed, which includes linoleic acid, oleic acid and palmitic acid, was estimated by subtracting the spectra of authentic fatty acids from the spectrum of the intact soybean seeds. The fatty acid compositions of seeds of 11 Japanese soybean cultivars and 5 lines bred at the Asian Vegetable Research and Development Center (AVRDC) were estimated by this rapid (within lhr for one seed) and nondestructive analytical method.  相似文献   

4.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

5.
The biodegradation of fatty alcohol polyglycol ethers was studied by analyzing the 14C-labeled intermediates isolated from the effluent of a model continuous-flow sewage treatment plant after dosage of either alkyl- or heptaglycol-labeled stearyl alcohol ethoxylate (SA-7EO). In each case, uncharged and carboxylated (mainly dicarboxylated) polyethylene glycols constituted the most prominent metabolites. The results indicate that there is a faster degradation of the alkyl than the polyethylene glycol moiety and that there are two distinct primary degradation mechanisms acting simultaneously in microbial biocenoses: intramolecular scission of the surfactant as well as omega- and beta-oxidation of the alkyl chain. Characterization of the bulk of 14C-labeled metabolites as a homologous series of neutral and acidic polyglycol units and identification of several C2-fragments accounted for the depolymerization of the hydrophilic part of the surfactant by stepwise cleavage of ether-bound EO units; from additional degradation studies employing either neutral or carboxylated 14C-labeled polyethylene glycols as model metabolites, it was concluded that hydrolytic as well as oxidative cleavage of C2-units is involved. Most of the identified low-molecular-weight 14C-labeled acids suggest an ultimate degradation of EO monomers by the oxidative dicarbonic acid cycle or the glycerate pathway or both. In addition, the finding of considerable amounts of oxalic and formic acids allow consideration of an additional mineralization route via glyoxylic, oxalic, and formic acids. The simultaneous action of different degradation mechanisms indicates the involvement of several distinct bacterial groups in the biodegradation of fatty alcohol ethoxylates under environmental conditions.  相似文献   

6.
Beta-oxidation of carboxylates takes place both in mitochondria and peroxisomes and in each pathway parallel enzymes exist for each conversion step. In order to better define the substrate specificities of these enzymes and in particular the elusive role of peroxisomal MFP-1, hepatocyte cultures from mice with peroxisomal gene knockouts were used to assess the consequences on substrate degradation. Hepatocytes from mice with liver selective elimination of peroxisomes displayed severely impaired oxidation of 2-methylhexadecanoic acid, the bile acid intermediate trihydroxycholestanoic acid (THCA), and tetradecanedioic acid. In contrast, mitochondrial beta-oxidation rates of palmitate were doubled, despite the severely affected inner mitochondrial membrane. As expected, beta-oxidation of the branched chain compounds 2-methylhexadecanoic acid and THCA was reduced in hepatocytes from mice with inactivation of MFP-2. More surprisingly, dicarboxylic fatty acid oxidation was impaired in MFP-1 but not in MFP-2 knockout hepatocytes, indicating that MFP-1 might play more than an obsolete role in peroxisomal beta-oxidation.  相似文献   

7.
Myrtle (Myrtus communis L.), a culinary spice and flavouring agent for alcoholic beverages widespread in the Mediterranean area and especially in Sardinia, contains the structurally unique oligomeric non-prenylated acylphloroglucinols, semimyrtucommulone and myrtucommulone A, whose antioxidant activity was investigated during the oxidative modification of lipid molecules implicated in the onset of cardiovascular diseases. Both acylphloroglucinols showed powerful antioxidant properties during the thermal (140 degrees C), solvent-free degradation of cholesterol. Moreover, the pre-treatment with semimyrtucommulone and myrtucommulone A significantly preserved LDL from oxidative damage induced by Cu(2+) ions at 2h of oxidation, and showed remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol, inhibiting the increase of their oxidative products (conjugated dienes fatty acids hydroperoxides, 7beta-hydroxycholesterol, and 7-ketocholesterol). Taking into account the widespread culinary use of myrtle leaves, the results of the present work qualify the natural compounds semimyrtucommulone and myrtucommulone A as interesting dietary antioxidants with potential antiatherogenicity.  相似文献   

8.
The effect of growth temperature on the cellular fatty acid composition of sulphate-reducing bacteria (SRB) was studied in 12 species belonging to eight genera including psychrophiles and mesophiles. Most of these species were of marine origin. The investigated SRB with the exception of four Desulfobacter species exhibited only a minor increase in the proportion of cis-unsaturated fatty acids (by < or = 5% per 10 degrees C) when the growth temperature was decreased; psychrophiles maintained their typically high content of cis-unsaturated fatty acids (around 75% of total fatty acids) nearly constant. The four Desulfobacter species, however, increased the proportion of cis-unsaturated among total fatty acids significantly (by > or =14% per 10 degrees C; measured in late growth phase) with decreasing growth temperature. The ratio between unsaturated and saturated fatty acids in Desulfobacter species changed not only with the growth temperature, but also with the growth state in batch cultures at constant temperature. Changes of cellular fatty acids were studied in detail with D. hydrogenophilus, the most psychrotolerant (growth range 0-35 degrees C) among the mesophilic SRB examined. Desulfobacter hydrogenophilus also formed cis-9,10-methylenehexadecanoic acid (a cyclopropane fatty acid) and 10-methylhexadecanoic acid. At low growth temperature (12 degrees C), the relative amount of these fatty acids was at least threefold lower; this questions the usefulness of 10-methylhexadecanoic acid as a reliable biomarker of Desulfobacter in cold sediments.  相似文献   

9.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

10.
It has been demonstrated that in vivo, exogenous [14C] palmitate is rapidly taken up and incorporated into phospholipid, neutral lipid and free fatty acid fractions of the kidney. During subsequent perfusion in an in vitro system, the amount of isotope decreases most rapidly in the neutral lipid (triglyceride) fraction. Net loss of chemical fatty acids cannot be detected after 2 hr. perfusion. The primary source of 14CO2 produced appears to be fatty acids from either neutral lipid or phospholipids. Since loss of 14C from neutral lipids is independent of O2 and substrates, regulation of fatty acid oxidation must be beyond triglyceride lipase.  相似文献   

11.
The distribution of cellular fatty acids in defined lipid classes was analyzed in Micrococcus cerificans after growth on specified hydrocarbons. Neutral lipid, phospholipid, and cell residue fatty acids were qualitatively and quantitatively determined for M. cerificans grown on nutrient broth, tetradecane (C(14)), pentadecane (C(15)), hexadecane (C(16)), and heptadecane (C(17)), respectively. Percentage of total cellular fatty acid localized in defined lipid classes from cells grown on the above growth substrates was (i) neutral lipid-11.8, 1.81, 7.74, 23.1, and 2%; (ii) phospholipid-74.5, 65, 66.43, 62.1, and 86%; (iii) cell residue lipid-13.5, 33.29, 25.82, 14.78, and 11.9%. Phospholipid fatty acid chain length directly reflected the carbon number of the alkane substrate, with 40, 84, 98, and 77% of the fatty acids being 14, 15, 16, and 17 carbons when cells were grown on C(14), C(15), C(16), and C(17)n-alkanes, respectively. The bound lipids of the cell residue after chloroform-methanol extraction were characterized by 2-hydroxydodecanoic and 2-hydroxytetradecanoic acids plus a broad spectrum of fatty acids ranging from C(10) to C(17) chain length. An increase in total unsaturated fatty acid localized in the phospholipids was noted from cells grown on alkanes greater than 15 carbons long. An extracellular accumulation of free fatty acid (FFA) was demonstrated in hexadecane-grown cultures that was not apparent in non-hydrocarbon-grown cultures. Identification of extracellular FFA demonstrated direct derivation from hexadecane oxidation. Studies supporting inhibition of de novo fatty acid biosynthesis in relationship to extracellular FFA and hexadecane oxidation are described. The ability to alter the fatty acid composition of membrane polar lipids in a predictable manner by the alkane carbon source provides an excellent model system for the investigation of membrane structure-function relationships in M. cerificans.  相似文献   

12.
Homologs of methyl esters of very polar fatty acids were obtained by methanolysis of cerebrin phosphate isolated from baker's yeast. The major ester component was isolated by preparative gas-liquid chromatography and was found to be 2,3-dihydroxyhexacosanoic acid as deduced from the mass spectra of its trimethylsilyl ether and isopropylidene derivative, reaction with periodate, and comparison of its chromatographic behavior with that of synthetic erythro- and threo-dihydroxy acids. Its infrared spectrum supported the above conclusions. From their retention times by gas-liquid chromatography, the homologs were found to be saturated, unbranched 2,3-dihydroxy fatty acids with 24-27 carbon atoms. The synthesis of the new fatty acids, erythro- and threo-2,3-dihydroxyhexacosanoic acids, is also reported. A method for separating trans-2-hexacosenoic acid, a key intermediate of the above synthesis, and its isomer, trans-3-hexacosenoic acid, both formed by dehydrobromination of 2-bromohexacosanoic acid, is also described.  相似文献   

13.
The role of lipids in membrane structure and function was studied by measuring the major lipid classes in mitochondria isolated from flight muscle of the blowfly, Phormia regina. Approximately 98% of the total lipid is phospholipid. Neutral lipid constitutes the remaining 2% of the total. Phosphatidylethanolamine accounts for 55–60% of the phospholipid. A molecular ratio of 4:1:1 is found for phosphatidylethanolamine, phosphatidylcholine, and cardiolipin (diphosphatidylglycerol). The neutral lipids include cholesterol, about 20%, and quinone, 40–45% of the total. The free fatty acid content of the neutral lipid fraction is variable, apparently being generated by endogenous phospholipase activity. The fatty acids of the neutral and phospholipid classes are predominantly 14–18 carbon acids; long-chain fatty acids of 20 and 22 carbons are essentially absent. The neutral lipid fraction contains 43% saturated and 51% monoenoic fatty acids. More than 65% of the phospholipid fatty acids are unsaturated. The principal fatty acids are palmitic, palmitoleic, oleic, linoleic, and linolenic. No trace of α- or β-tocopherol is detected. As vitamin E is considered an important naturally occuring antioxidant that prevents lipid peroxidation, the apparent absence of α- and β-tocopherol in these mitochondria coupled with intense oxidative activity of the mitochondria leads to the suggestion that blowfly flight muscle mitochondria may be particularly susceptible to peroxidative damage.  相似文献   

14.
Lipid analysis and ESR studies were carried out on prostasomes isolated from human semen. Cholesterol plus phospholipids amounted to approximately 0.80 mumol per mg protein with a striking quantitative domination of cholesterol over the phospholipids, the molar ratios of cholesterol/sphingomyelin/glycerophospholipids being 4:1:1. Saturated and monounsaturated fatty acids were dominating both in the glycerophospholipids and in sphingomyelin. The order parameters, S, deduced from ESR spectra of spin-labelled fatty acids incorporated into prostasome membranes order parameters, S, deduced from ESR spectra of spin-labelled fatty acids incorporated into prostasome membranes were very high, viz. 0.75 for 5-doxylstearic acid and 0.30 for 16-doxylstearic acid at 25 degrees C. Slightly lower values were obtained for the spin-labelled fatty acids when they were incorporated into dispersions of extracted prostasome lipids or into synthetic lipid mixtures of similar composition. The highly ordered lipids in the prostasome membrane thus seemed to be minimally perturbed by proteins in the membrane and ESR spectra showed no signs of immobilized lipids.  相似文献   

15.
The activity of a single IP administration (15 or 30 mg/Kg body weight) of vanillyl nonanoate, a simplified analog of capsiate, on ferric nitrilotriacetate (Fe-NTA)-mediated oxidative damage was investigated. A sub-lethal dose of Fe-NTA (15 mg Fe/Kg body weight) was administered IP to rats; animals were sacrificed, and kidney and plasma were collected 1 h after injection. In response to the Fe-NTA administration, a reduction of the levels of total lipids, total unsaturated fatty acids and cholesterol was observed, accompanied by a rise in the concentrations of malondialdehyde (MDA), conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol in plasma and kidney 1 h after administration. A pre-treatment with synthetic capsiate (SCPT) showed remarkable protective effect on the reduction of the levels of total lipids, total unsaturated fatty acids and cholesterol, and the cellular antioxidant vitamin E, inhibiting the increase of MDA, conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol in the plasma and kidney. The protective effect of SCPT and two analogues (vanillyl alcohol and vanillin) during the linoleic acid and cholesterol oxidation was investigated in in vitro systems, providing evidence of definite structure-activity relationships.  相似文献   

16.
To determine whether the clinical phenotype of ALD correlates with the extent of metabolic abnormality, we investigated VLFA metabolism in cultured fibroblasts from patients with the clinically severe childhood from of ALD and the milder AMN variant. No differences were seen in the content of neutral lipids or phospholipids, in incorporation of [1-14C]lignocerate into cellular lipids, or in the fatty acid composition of fibroblasts from patients with childhood ALD or AMN. [1-14C]Lignocerate oxidation was deficient to a similar extent (35-40% of normal) in both intact fibroblasts and cell homogenates from patients with childhood ALD and AMN. With the use of fibroblast homogenates, oxidation of lignocerate was partially inhibited by various long-chain fatty acids, and residual activity in ALD homogenates was more susceptible to inhibition by palmitate than normal. In the presence of competing palmitate, residual lignocerate oxidative activity in fibroblast homogenates was reduced to 20 +/- 4% of normal in childhood ALD and 24 +/- 2% of normal in AMN. These results indicate that residual VLFA oxidative activity, fatty acid composition, VLFA metabolism, and lipid content of cultured fibroblasts do not correlate with the clinical expression of the ALD gene.  相似文献   

17.
Acid hydrolysates of 140 strains, representing 11 species of the genus Bacteroides, were analyzed by capillary gas-liquid chromatography for total cellular fatty acid. All samples contained components which appeared to be hydroxy fatty acid. The relative amount and chain length distribution of the hydroxy fatty acids, as well as the nonhydroxy fatty acids, varied according to species. To characterize the presumed hydroxy acids, a composite of some 40 of these samples was analyzed by thin-layer and capillary gas-liquid chromatography, mass spectrometry, infrared spectrophotometry, and polarimetry. The hydroxy acids were shown to be of the D-(--)-3-hydroxy acid family. The predominant component was the iso-branched D-(--)-3-hydroxy-15-methylhexadecanoic acid. Lesser amounts of the iso-branched 15-carbon, straight-chain 16-carbon, and anteiso-branched 17-carbon acids were also found.  相似文献   

18.
The dipyruvylated glycolipid from Mycobacterium smegmatis (Saadat, S., and Ballou, C.E. (1983) J. Biol. Chem. 258, 1813-1818) has been shown to have the following structure in which FA1 is tetra- or hexadecanoic acid and FA2 is 2,4-dimethyl-2-eicosenoic acid. (formula; see text) The fast atom bombardment mass spectrum showed two major ions [M - H]- at m/z 1511 and 1539 (Mr 1512 and 1540) in a ratio of 1.4:1, suggesting that the glycolipid was a mixture of homologs that differed in fatty acid composition by 2 methylene groups. Analysis revealed C14, C16, and C22 fatty acids in ratios of 0.6:0.4:1.0, indicating that 60% of the molecules contained a C14 and C22 fatty acid whereas 40% contained a C16 and C22 fatty acid. The fragmentation pattern showed that a single glucose unit along with the smaller fatty acid could be lost to yield a tetrasaccharide with attached C22 fatty acid, and a second fragmentation yielded a trisaccharide containing 2 pyruvic acids but without attached fatty acid. The C14 and C16 fatty acids were identified as myristic and palmitic acid, whereas the C22 fatty acid was 2,4-dimethyl-2-eicosenoic acid. Precise localization of the fatty acids came from periodate oxidation and methylation analysis.  相似文献   

19.
Acholeplasma laidlawii B was grown on the branched-chain fatty acids, 14-methylpentadecanoic acid and 14-methylhexadecanoic acid, and the straight-chain palmitic acid. The incorporation of the branched-chain fatty acids was very effective; more than 90% of the fatty acids of the lipids of this organism consisted of the branched-chain constituents. A somewhat smaller amount (81%) was found in the cells grown with palmitic acid. Differential scanning calorimetry of the isolated membranes showed that distinct lipid phase transitions occurred in between 15 and 31 °C for the 14-methylpentadecanoic acid, 11 and 29 °C for the 14-methylhexadecanoic acid, and 14 and 36 °C for the palmitic acid-enriched membranes. Freeze-fracture electron microscopy showed that the lipid phase transitions were accompanied by particle aggregation only in the case of palmitic acid-enriched membranes. When the branched-chain acid-enriched membranes were quenched from temperatures below the onset of the lipid phase transition, a random distribution of particles on both fracture faces of the membrane was observed. The membranes were incubated with pig pancreatic phospholipase A2 at various temperatures. Below the onset of the lipid phase transition phosphatidylglycerol was not accessible for this enzyme in palmitate-enriched membranes. However, a fast hydrolysis of 60–75% of the phosphatidylglycerol could be measured in the branched-chain acid-enriched membranes at temperatures below the onset of the lipid phase transition. The residual phosphatidylglycerol could be hydrolyzed at a slower, temperature-dependent rate. The observations show that lipids containing branched-chain acids undergo a cooperative lipid phase transition which does not result in a tight packing of the lipids of the bilayer below the phase transition.  相似文献   

20.
The effects of unsaturated fatty acid deprivation on lipid synthesis in Saccharomyces cerevisiae strain GL7 were determined by following the incorporation of [14C]acetate. Compared to yeast cells grown with oleic acid, unsaturated fatty acid-deprived cells contained 200 times as much 14C label in squalene, with correspondingly less label in 2,3-oxidosqualene and 2,3;22,23-dioxidosqualene. Cells deprived of either methionine or cholesterol did not accumulate squalene, demonstrating that the effect of unsaturated fatty acid starvation on squalene oxidation was not due to an inhibition of cell growth. Cells deprived of olefinic supplements displayed additional changes in lipid metabolism: (i) an increase in 14C-labeled diacylglycerides, (ii) a decrease in 14C-labeled triacylglycerides, and (iii) increased levels of 14C-labeled decanoic and dodecanoic fatty acids. The changes in squalene oxidation and acylglyceride metabolism in unsaturated fatty acid-deprived cells were readily reversed by adding oleic acid. Pulse-chase studies demonstrated that the [14C]squalene and 14C-labeled diacylglycerides which accumulated during starvation were further metabolized when cells were resupplemented with oleic acid. These results demonstrate that unsaturated fatty acids are essential for normal lipid metabolism in yeasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号