首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Wan Y 《生理学报》2008,60(5):579-580
Dorsal root ganglion(DRG)neurons have peripheral terminals in skin,muscle,and other peripheral tissues,andcentral terminals  相似文献   

3.
Diabetic neuropathic pain is associated with increased glutamatergic input in the spinal dorsal horn. Group I metabotropic glutamate receptors (mGluRs) are involved in the control of neuronal excitability, but their role in the regulation of synaptic transmission in diabetic neuropathy remains poorly understood. Here we studied the role of spinal mGluR5 and mGluR1 in controlling glutamatergic input in a rat model of painful diabetic neuropathy induced by streptozotocin. Whole-cell patch-clamp recordings of lamina II neurons were performed in spinal cord slices. The amplitude of excitatory post-synaptic currents (EPSCs) evoked from the dorsal root and the frequency of spontaneous EPSCs (sEPSCs) were significantly higher in diabetic than in control rats. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) inhibited evoked EPSCs and sEPSCs more in diabetic than in control rats. Also, the percentage of neurons in which sEPSCs and evoked EPSCs were affected by MPEP or the group I mGluR agonist was significantly higher in diabetic than in control rats. However, blocking mGluR1 had no significant effect on evoked EPSCs and sEPSCs in either groups. The mGluR5 protein level in the dorsal root ganglion, but not in the dorsal spinal cord, was significantly increased in diabetic rats compared with that in control rats. Furthermore, intrathecal administration of MPEP significantly increased the nociceptive pressure threshold only in diabetic rats. These findings suggest that increased mGluR5 expression on primary afferent neurons contributes to increased glutamatergic input to spinal dorsal horn neurons and nociceptive transmission in diabetic neuropathic pain.  相似文献   

4.
目的:观察坐骨神经慢性压榨损伤(CCI)致神经病理痛后,大鼠背根节神经元GABAA受体(γ-氨基丁酸A受体)激活电流的变化。方法:运用全细胞膜片钳技术记录CCI模型手术侧、手术对侧及假手术组大鼠背根神经节细胞GABAx受体激活电流,比较坐骨神经慢性压榨损伤后GABAA受体激活电流的变化。结果:①CCI模型组大鼠手术侧DRG神经元在不同浓度(0.1-1000μmol/L)GABAA受体激活电流幅值均显著小于假手术组。②CCI模型组大鼠手术对侧DRG神经元在不同浓度(0.01-1000μmol/L)GABAA受体激活电流幅值均显著大于手术同侧及假手术组。结论:在坐骨神经慢性压榨损伤的过程中,不仅损伤侧的DRG神经元GABAA受体激活电流显著减小,这种损伤同时还引起了手术对侧的DRG神经元GABA激活电流代偿性的增强,GABAA受体功能的改变导致的突触前抑制作用的减弱可能是神经病理痛产生的根本原因之一。  相似文献   

5.
6.
7.
Yan N  Li XH  Cheng Q  Yan J  Ni X  Sun JH 《生理学报》2007,59(2):240-246
慢性压迫大鼠背根神经节(chronic compression of the dorsal root,ganglion,CCD)后,背根神经节细胞兴奋性升高,但引起神经元兴奋性改变的离子通道机制还需进一步探索。本实验采用胞内记录以及全细胞膜片钳记录方法,研究急性分离的大鼠背根神经节细胞兴奋性改变与瞬时外向钾电流(A-type potassium current,ⅠA)的关系。结果表明,CCD术后背根神经节细胞兴奋性升高,在急性分离的体外细胞中仍继续存在,表现为对辣椒素敏感的背根神经节细胞产生动作电位的最小电流刺激强度,即阈电流(current threshold)及阈电位(voltage threshold)降低;给予正常对照组神经元(未压迫损伤)瞬时外向钾通道阻断剂4-氨基吡啶,出现了类似CCD术后兴奋性升高的改变。进一步用两步电压钳方法分离ⅠA,研究CCD术后神经元ⅠA的变化,结果表明,CCD组神经元的ⅠA比对照组神经元ⅠA降低,并且与其阈电位的改变一致。以上结果提示,背根神经节压迫受损后,神经节细胞ⅠA降低可能参与介导了神经节细胞兴奋性的升高。  相似文献   

8.
The response of the peripheral nervous system (PNS) to injury may go together with alterations in epigenetics, a conjecture that has not been subjected to a comprehensive, genome-wide test. Using reduced representation bisulfite sequencing, we report widespread remodeling of DNA methylation in the rat dorsal root ganglion (DRG) occurring within 24 h of peripheral nerve ligation, a neuropathy model of allodynia. Significant (P < 10−4) cytosine hyper- and hypo-methylation was found at thousands of CpG sites. Remodeling occurred outside of CpG islands. Changes affected genes with known roles in the PNS, yet methylome remodeling also involved genes that were not linked to neuroplasticity by prior evidence. Consistent with emerging models relying on genome-wide methylation and RNA-seq analysis of promoter regions and gene bodies, variation of methylation was not tightly linked with variation of gene expression. Furthermore, approximately 44% of the dynamically changed CpGs were located outside of genes. We compared their positions with the intergenic, tissue-specific differentially methylated CpGs (tDMCs) of an independent experimental set consisting of liver, spleen, L4 control DRG, and muscle. Dynamic changes affected those intergenic CpGs that were different between tissues (P < 10−15) and almost never the invariant portion of the methylome (those CpGs that were identical across all tissues). Our findings—obtained in mixed tissue—show that peripheral nerve injury leads to methylome remodeling in the DRG. Future studies may address which of the cell types found in the DRG, such as specific groups of neurons or non-neuronal cells are affected by which aspect of the observed methylome remodeling.  相似文献   

9.
10.
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.  相似文献   

11.
Repetitive exposure of neonates to noxious events is inherent to their health status monitoring in neonatal intensive care units (NICU). Altered basal nociception in the absence of an injury in later life has been demonstrated in ex‐NICU children, but the impact on pain hypersensitivity following an injury in later life is unknown. Also, underlying mechanisms for such long‐term changes are relatively unknown. The objective of this study is to investigate acute and long‐term effects of neonatal repetitive painful skin‐breaking procedures on nociception and to investigate plasticity of the nociceptive circuit. The repetitive needle prick animal model was used in which neonatal rats received four needle pricks into the left hind paw per day during the first postnatal week and control animals received nonpainful tactile stimuli. Repetitive needle pricking during the first week of life induced acute hypersensitivity to mechanical stimuli. At the age of 8 weeks, increased duration of postoperative hypersensitivity to mechanical stimuli after ipsilateral hind paw incision was shown in needle prick animals. Basal nociception from 3 to 8 weeks of age was unaffected by neonatal repetitive needle pricking. Increased calcitonin gene‐related peptide expression was observed in the ipsilateral and contralateral lumbar spinal cord but not in the hind paw of needle prick animals at the age of 8 weeks. Innervation of tactile Aβ‐fibers in the spinal cord was not affected. Ourresults indicate both acute and long‐term effects of repetitive neonatal skin breaking procedures on nociception and long‐term plasticity of spinal but not peripheral innervation of nociceptive afferents. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2013  相似文献   

12.
In the last 2 decades biomedical research has provided great insights into the molecular signatures underlying painful conditions. However, chronic pain still imposes substantial challenges to researchers, clinicians and patients alike. Under pathological conditions, pain therapeutics often lack efficacy and exhibit only minimal safety profiles, which can be largely attributed to the targeting of molecules with key physiological functions throughout the body. In light of these difficulties, the identification of molecules and associated protein complexes specifically involved in chronic pain states is of paramount importance for designing selective interventions. Ion channels and receptors represent primary targets, as they critically shape nociceptive signaling from the periphery to the brain. Moreover, their function requires tight control, which is usually implemented by protein-protein interactions (PPIs). Indeed, manipulation of such PPIs entails the modulation of ion channel activity with widespread implications for influencing nociceptive signaling in a more specific way. In this review, we highlight recent advances in modulating ion channels and receptors via their PPI networks in the pursuit of relieving chronic pain. Moreover, we critically discuss the potential of targeting PPIs for developing novel pain therapies exhibiting higher efficacy and improved safety profiles.  相似文献   

13.
14.
Cytokines such as interleukins are known to be involved in the development of neuropathic pain through activation of neuroglia. However, the role of chemokine (C-C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, in the nociceptive transmission remains unclear. We found that CCL-1 was upregulated in the spinal dorsal horn after partial sciatic nerve ligation. Therefore, we examined actions of recombinant CCL-1 on behavioural pain score, synaptic transmission, glial cell function and cytokine production in the spinal dorsal horn. Here we show that CCL-1 is one of the key mediators involved in the development of neuropathic pain. Expression of CCL-1 mRNA was mainly detected in the ipsilateral dorsal root ganglion, and the expression of specific CCL-1 receptor CCR-8 was upregulated in the superficial dorsal horn. Increased expression of CCR-8 was observed not only in neurons but also in microglia and astrocytes in the ipsilateral side. Recombinant CCL-1 injected intrathecally (i.t.) to naive mice induced allodynia, which was prevented by the supplemental addition of N-methyl-𝒟-aspartate (NMDA) receptor antagonist, MK-801. Patch-clamp recordings from spinal cord slices revealed that application of CCL-1 transiently enhanced excitatory synaptic transmission in the substantia gelatinosa (lamina II). In the long term, i.t. injection of CCL-1 induced phosphorylation of NMDA receptor subunit, NR1 and NR2B, in the spinal cord. Injection of CCL-1 also upregulated mRNA level of glial cell markers and proinflammatory cytokines (IL-1β, TNF-α and IL-6). The tactile allodynia induced by nerve ligation was attenuated by prophylactic and chronic administration of neutralizing antibody against CCL-1 and by knocking down of CCR-8. Our results indicate that CCL-1 is one of the key molecules in pathogenesis, and CCL-1/CCR-8 signaling system can be a potential target for drug development in the treatment for neuropathic pain.  相似文献   

15.
Neuropathic pain that occurs after peripheral nerve injury is poorly controlled by current therapies. Increasing evidence shows that mitogen-activated protein kinase (MAPK) play an important role in the induction and maintenance of neuropathic pain. Here we show that activation of extracellular signal-regulated protein kinases 5 (ERK5), also known as big MAPK1, participates in pain hypersensitivity caused by nerve injury. Nerve injury increased ERK5 phosphorylation in spinal microglia and in both damaged and undamaged dorsal root ganglion (DRG) neurons. Antisense knockdown of ERK5 suppressed nerve injury-induced neuropathic pain and decreased microglial activation. Furthermore, inhibition of ERK5 blocked the induction of transient receptor potential channels and brain-derived neurotrophic factor expression in DRG neurons. Our results show that ERK5 activated in spinal microglia and DRG neurons contributes to the development of neuropathic pain. Thus, blocking ERK5 signaling in the spinal cord and primary afferents has potential for preventing pain after nerve damage.  相似文献   

16.
不同频率的电针对大鼠神经源性痛的治疗作用   总被引:20,自引:0,他引:20  
目的:探讨不同频率的电针能否减轻大鼠神经源性痛。方法:将大鼠右侧L5/L6脊神经结扎,用引起50%抬足的机械刺激阈值评价机械性痛觉超敏,用大鼠5min内从5℃冷权上的抬足次数反映冷诱发的持续性疼痛。用韩氏穴位神经刺激仪给与2Hz或100Hz电刺激。结果:①2Hz和100Hz电针均一轻痛觉超敏,2Hz起效较早。②两种频率电针均能减轻冷诱发的持续性疼痛,但2Hz持续的时间长,多次电针后2Hz的镇痛效果可持续长达48h。③针刺而不通电也能显著减轻冷诱发的持续性痛。结论:电针能减轻神经源性痛,且低频(2Hz)电针的镇痛效果优于高频(100Hz)电针。  相似文献   

17.
Chronic pain states are characterized by long-term sensitization of spinal cord neurons that relay nociceptive information to the brain. Among the mechanisms involved, up-regulation of Cav1.2-comprising L-type calcium channel (Cav1.2-LTC) in spinal dorsal horn have a crucial role in chronic neuropathic pain. Here, we address a mechanism of translational regulation of this calcium channel. Translational regulation by microRNAs is a key factor in the expression and function of eukaryotic genomes. Because perfect matching to target sequence is not required for inhibition, theoretically, microRNAs could regulate simultaneously multiple mRNAs. We show here that a single microRNA, miR-103, simultaneously regulates the expression of the three subunits forming Cav1.2-LTC in a novel integrative regulation. This regulation is bidirectional since knocking-down or over-expressing miR-103, respectively, up- or down-regulate the level of Cav1.2-LTC translation. Functionally, we show that miR-103 knockdown in naive rats results in hypersensitivity to pain. Moreover, we demonstrate that miR-103 is down-regulated in neuropathic animals and that miR-103 intrathecal applications successfully relieve pain, identifying miR-103 as a novel possible therapeutic target in neuropathic chronic pain.  相似文献   

18.
19.
《Cell reports》2023,42(1):112010
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

20.
神经病理痛是临床上常见病症,其发病机制尚不清楚,目前尚无有效的治疗手段,其慢性神经病理痛持续时间长,故其研究成为疼痛领域的热点和重点。近年来发现T型钙通道在神经病理性疼痛中起到了关键性的作用。本文将近年T型钙通道在神经病理性痛模型中介导疼痛的机制研究进展加以综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号