首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assumption that electrical oscillatory phenomena must be present during the cellular reproductive cycle is examined and found to be supported by the presently available evidence, mainly that on mouse cells.As a corollary, it suggests an electrically oscillatory aspect to the contact inhibition of growth, and three mechanisms for the invasiveness of cancer cells: changes in either the power level, degree of insulation, or frequency of the oscillatory phenomena associated with reproduction. The available evidence is in support of this, but much more is needed. A number of critical questions are presented.  相似文献   

2.
Electrical bursting oscillations of mammalian pancreatic beta-cells are synchronous among cells within an islet. While electrical coupling among cells via gap junctions has been demonstrated, its extent and topology are unclear. The beta-cells also share an extracellular compartment in which oscillations of K+ concentration have been measured (Perez-Armendariz and Atwater, 1985). These oscillations (1-2 mM) are synchronous with the burst pattern, and apparently are caused by the oscillating voltage-dependent membrane currents: Extracellular K+ concentration (Ke) rises during the depolarized active (spiking) phase and falls during the hyperpolarized silent phase. Because raising Ke depolarizes the cell membrane by increasing the potassium reversal potential (VK), any cell in the active phase should recruit nonspiking cells into the active phase. The opposite is predicted for the silent phase. This positive feedback system might couple the cells' electrical activity and synchronize bursting. We have explored this possibility using a theoretical model for bursting of beta-cells (Sherman et al., 1988) and K+ diffusion in the extracellular space of an islet. Computer simulations demonstrate that the bursts synchronize very quickly (within one burst) without gap junctional coupling among the cells. The shape and amplitude of computed Ke oscillations resemble those seen in experiments for certain parameter ranges. The model cells synchronize with exterior cells leading, though incorporating heterogeneous cell properties can allow interior cells to lead. The model islet can also be forced to oscillate at both faster and slower frequencies using periodic pulses of higher K+ in the medium surrounding the islet. Phase plane analysis was used to understand the synchronization mechanism. The results of our model suggest that diffusion of extracellular K+ may contribute to coupling and synchronization of electrical oscillations in beta-cells within an islet.  相似文献   

3.
Mechanical stress induces auto/paracrine ATP release from various cell types, but the mechanisms underlying this release are not well understood. Here we show that the release of ATP induced by hypotonic stress (HTS) in bovine aortic endothelial cells (BAECs) occurs through volume-regulated anion channels (VRAC). Various VRAC inhibitors, such as glibenclamide, verapamil, tamoxifen, and fluoxetine, suppressed the HTS-induced release of ATP, as well as the concomitant Ca(2+) oscillations and NO production. They did not, however, affect Ca(2+) oscillations and NO production induced by exogenously applied ATP. Extracellular ATP inhibited VRAC currents in a voltage-dependent manner: block was absent at negative potentials and was manifest at positive potentials, but decreased at highly depolarized potentials. This phenomenon could be described with a "permeating blocker model," in which ATP binds with an affinity of 1.0 +/- 0.5 mM at 0 mV to a site at an electrical distance of 0.41 inside the channel. Bound ATP occludes the channel at moderate positive potentials, but permeates into the cytosol at more depolarized potentials. The triphosphate nucleotides UTP, GTP, and CTP, and the adenine nucleotide ADP, exerted a similar voltage-dependent inhibition of VRAC currents at submillimolar concentrations, which could also be described with this model. However, inhibition by ADP was less voltage sensitive, whereas adenosine did not affect VRAC currents, suggesting that the negative charges of the nucleotides are essential for their inhibitory action. The observation that high concentrations of extracellular ADP enhanced the outward component of the VRAC current in low Cl(-) hypotonic solution and shifted its reversal potential to negative potentials provides more direct evidence for the nucleotide permeability of VRAC. We conclude from these observations that VRAC is a nucleotide-permeable channel, which may serve as a pathway for HTS-induced ATP release in BAEC.  相似文献   

4.
Emergent properties of electrically coupled smooth muscle cells   总被引:1,自引:0,他引:1  
Asynchronous and synchronous calcium oscillations occur in a variety of cells. A well-established pathway for intercellular communication is provided by gap junctions which connect adjacent cells and can mediate electrical and chemical coupling. Several experimental studies report that cells presenting only a transient increase when freshly dispersed may oscillate when they are coupled. Such observations suggest that the role of gap junctions is not only to coordinate calcium oscillations of adjacent cells. Gap junctions may also be important to generate oscillations. Here we illustrate the emergent properties of electrically coupled smooth muscle cells using a model that we recently proposed. A bifurcation analysis in the case of two cells reveals that synchronous and asynchronous calcium oscillations can be induced by electrical coupling. In a larger population of smooth muscle cells, electrical coupling may result in the creation of groups of cells presenting synchronous calcium oscillations. The elements of one group may be distant from each other. Moreover, our results highlight a general mechanism by which gap junctional electrical coupling can give rise to out of phase calcium oscillations in smooth muscle cells that are non-oscillating when uncoupled. All these observations remain true in the case of non-identical cells, except that the solution corresponding to synchronous calcium oscillations disappears and that the formation of groups is sensitive to the degree of heterogeneity. The first two authors contributed equally to this work.  相似文献   

5.
 During different behavioral states different population activities are present in the hippocampal formation. These activities are not independent: sharp waves often occur together with high-frequency ripples, and gamma-frequency activity is usually superimposed on theta oscillations. There is both experimental and theoretical evidence supporting the notion that gamma oscillation is generated intrahippocampally, but there is no generally accepted view about the origin of theta waves. Precise timing of population bursts of pyramidal cells may be due to a synchronized external drive. Membrane potential oscillations recorded in the septum are unlikely to fulfill this purpose because they are not coherent enough. We investigated the prospects of an intrahippocampal mechanism supplying pyramidal cells with theta frequency periodic inhibition, by studying a model of a network of hippocampal inhibitory interneurons. As shown previously, interneurons are capable of generating synchronized gamma-frequency action potential oscillations. Exciting the neurons by periodic current injection, the system could either be entrained in an oscillation with the frequency of the inducing current or exhibit in-phase periodic changes at the frequency of single cell (and network) activity. Simulations that used spatially inhomogeneous stimulus currents showed anti-phase frequency changes across cells, which resulted in a periodic decrease in the synchrony of the network. As this periodic change in synchrony occurred in the theta frequency range, our network should be able to exhibit the theta-frequency weakening of inhibition of pyramidal cells, thus offering a possible mechanism for intrahippocampal theta generation. Received: 23 February 2000 / Accepted in revised form: 30 June 2000  相似文献   

6.
Acetylcholine (ACh) influences a vast array of phenomena in cortical systems. It alters many ionic conductances and neuronal firing behavior, often by regulating membrane potential oscillations in populations of cells. Synaptic inhibition has crucial roles in many forms of oscillation, and cholinergic mechanisms regulate both oscillations and synaptic inhibition. In vitro investigations using bath-application of cholinergic receptor agonists, or bulk tissue electrical stimulation to release endogenous ACh, have led to insights into cholinergic function, but questions remain because of the relative lack of selectivity of these forms of stimulation. To investigate the effects of selective release of ACh on interneurons and oscillations, we used an optogenetic approach in which the light-sensitive non-selective cation channel, Channelrhodopsin2 (ChR2), was virally delivered to cholinergic projection neurons in the medial septum/diagonal band of Broca (MS/DBB) of adult mice expressing Cre-recombinase under the control of the choline-acetyltransferase (ChAT) promoter. Acute hippocampal slices obtained from these animals weeks later revealed ChR2 expression in cholinergic axons. Brief trains of blue light pulses delivered to untreated slices initiated bursts of ACh-evoked, inhibitory post-synaptic currents (L-IPSCs) in CA1 pyramidal cells that lasted for 10's of seconds after the light stimulation ceased. L-IPSC occurred more reliably in slices treated with eserine and a very low concentration of 4-AP, which were therefore used in most experiments. The rhythmic, L-IPSCs were driven primarily by muscarinic ACh receptors (mAChRs), and could be suppressed by endocannabinoid release from pyramidal cells. Finally, low-frequency oscillations (LFOs) of local field potentials (LFPs) were significantly cross-correlated with the L-IPSCs, and reversal of the LFPs near s. pyramidale confirmed that the LFPs were driven by perisomatic inhibition. This optogenetic approach may be a useful complementary technique in future investigations of endogenous ACh effects.  相似文献   

7.
Synchronous oscillations in neural populations are considered being controlled by inhibitory neurons. In the granular layer of the cerebellum, two major types of cells are excitatory granular cells (GCs) and inhibitory Golgi cells (GoCs). GC spatiotemporal dynamics, as the output of the granular layer, is highly regulated by GoCs. However, there are various types of inhibition implemented by GoCs. With inputs from mossy fibers, GCs and GoCs are reciprocally connected to exhibit different network motifs of synaptic connections. From the view of GCs, feedforward inhibition is expressed as the direct input from GoCs excited by mossy fibers, whereas feedback inhibition is from GoCs via GCs themselves. In addition, there are abundant gap junctions between GoCs showing another form of inhibition. It remains unclear how these diverse copies of inhibition regulate neural population oscillation changes. Leveraging a computational model of the granular layer network, we addressed this question to examine the emergence and modulation of network oscillation using different types of inhibition. We show that at the network level, feedback inhibition is crucial to generate neural oscillation. When short-term plasticity was equipped on GoC-GC synapses, oscillations were largely diminished. Robust oscillations can only appear with additional gap junctions. Moreover, there was a substantial level of cross-frequency coupling in oscillation dynamics. Such a coupling was adjusted and strengthened by GoCs through feedback inhibition. Taken together, our results suggest that the cooperation of distinct types of GoC inhibition plays an essential role in regulating synchronous oscillations of the GC population. With GCs as the sole output of the granular network, their oscillation dynamics could potentially enhance the computational capability of downstream neurons.  相似文献   

8.
Veruki ML  Hartveit E 《Neuron》2002,33(6):935-946
AII (rod) amacrine cells in the mammalian retina are reciprocally connected via gap junctions, but there is no physiological evidence that demonstrates a proposed function as electrical synapses. In whole-cell recordings from pairs of AII amacrine cells in a slice preparation of the rat retina, bidirectional, nonrectifying electrical coupling was observed in all pairs with overlapping dendritic trees (average conductance approximately 700 pS). Coupling displayed characteristics of a low-pass filter, with no evidence for amplification of spike-evoked electrical postsynaptic potentials by active conductances. Coincidence detection, as well as precise temporal synchronization of subthreshold membrane potential oscillations and TTX-sensitive spiking, was commonly observed. These results indicate a unique mode of operation and integrative capability of the network of AII amacrine cells.  相似文献   

9.
10.
Membrane potential (MP) oscillations produced by excitatory amino acids (EAA) have been studied in branching neurons isolated by an enzymatic-mechanical method from the lamprey spinal cord. It was shown that (1) all studied EAA (glutamate, kainate, NMDA, aspartate, and quisqualate) evoke an ion current and a short-term reversible depolarization in studied cells; (2) EAA added to perfusion solution may produce MP oscillations, with kinetic parameters and duration of the oscillation depending on the amino acid used (the most effective are kainate and NMDA, the least effective, quisqualate); (3) oscillations can be irregular (of the type of a synaptic noise or of a long-term plateau of depolarization with action potentials—AP) or regular, with frequency of 0.5–1.5 Hz. Amplitude of both oscillation types depends on MP level, frequency is more steady for each cell and less depends on MP. In 68 out of 128 studied cells, oscillations could be evoked, which indicates that a significant part of lamprey spinal neurons have intrinsic capability for MP oscillations and probably pacemaker properties. The functional role of oscillations can be different. They can take cells out from the profound inhibition state, synchronize activity of rhythm generation neurons and/or be the base for trigger signals (AP firing) sent by locomotor neuronal circuits to trunk muscles.  相似文献   

11.
Many experimental studies have shown that arterial smooth muscle cells respond with cytosolic calcium rises to vasoconstrictor stimulation. A low vasoconstrictor concentration gives rise to asynchronous spikes in the calcium concentration in a few cells (asynchronous flashing). With a greater vasoconstrictor concentration, the number of smooth muscle cells responding in this way increases (recruitment) and calcium oscillations may appear. These oscillations may eventually synchronize and generate arterial contraction and vasomotion. We show that these phenomena of recruitment and synchronization naturally emerge from a model of a population of smooth muscle cells coupled through their gap junctions. The effects of electrical, calcium, and inositol 1,4,5-trisphosphate coupling are studied. A weak calcium coupling is crucial to obtain a synchronization of calcium oscillations and the minimal required calcium permeability is deduced. Moreover, we note that an electrical coupling can generate oscillations, but also has a desynchronizing effect. Inositol 1,4,5-trisphosphate diffusion does not play an important role to achieve synchronization. Our model is validated by published in vitro experiments obtained on rat mesenteric arterial segments.  相似文献   

12.
Notch signaling has been reported to play an essential role in tumorigenesis. Several studies have suggested that Notch receptors could be oncoproteins or tumor suppressors in different types of human cancers. Emerging evidence has suggested that Notch pathway regulates cell growth, apoptosis, cell cycle, and metastasis. In the current study, we explore whether Notch-1 could regulate the cell invasion and migration as well as EMT (epithelial-mesenchymal transition) in prostate cancer cells. We found that overexpression of Notch-1 enhanced cell migration and invasion in PC-3 cells. However, downregulation of Notch-1 retarded cell migration and invasion in prostate cancer cells. Importantly, we observed that overexpression of Notch-1 led to EMT in PC-3 cells. Notably, we found that EMT-type cells are associated with EMT markers change and cancer stem cell phenotype. Taken together, we concluded that downregulation of Notch-1 could be a promising approach for inhibition of invasion in prostate cancer cells, which could be useful for the treatment of metastatic prostate cancer.  相似文献   

13.
The response of HeLa cells to histamine H1 receptor stimulation is characterized by periodic increases in cytosolic free Ca2+ concentration. The mechanisms underlying this oscillatory behaviour are not well understood. Fura-2 and patch clamp experiments carried out on HeLa cells have previously shown: (a) that Ca2+ oscillations are not initially dependent on the presence of external Ca2+, that external Ca2+ is required to maintain the oscillatory activity; (b) that a depolarization of the cell membrane leads to an inhibition of Ca2+ oscillations during the external Ca2+ dependent phase of the process; and (c) that Ca2+ oscillations can be abolished during this latter phase by the exogenous addition of Ca2+ channel blocking agents, such as Co2+ or La3+. The contribution of the inositol phosphate pathway to Ca2+ oscillations was more recently investigated in whole cell experiments performed with patch pipettes containing IP3 or the non-hydrolysable GTP analogue GTP-gamma S. Clear periodic current fluctuations were recorded using both patch pipette solutions. Assuming that the intracellular IP3 level remained constant under these conditions, these findings provide direct evidence that the Ca2+ oscillations in HeLa cells do not arise from a periodic production of IP3. The effect of the internal and external cell pH on the oscillatory process was also investigated in Fura-2 and patch clamp experiments. It was found that an increase in intracellular pH from 7.4 to 7.7 during the external Ca2+ dependent phase of the histamine stimulation abolishes the appearance of Ca2+ spikes whereas, a cellular acidification to pH 7.2 maintains or stimulates the Ca2+ oscillatory activity. The former effect was observed in the absence of Ca2+ in the bathing medium, indicating that the inhibitory action of alkaline pH was not related to a reduced Ca2+ entry. An increase in extracellular pH from 7.3 to 9.0 in contrast elicited an intracellular Ca2+ accumulation which resulted in most cases in an inhibition of the oscillatory process. This effect was dependent on external Ca2+ and was observed in alkaline internal pH conditions (pH 7.7). These observations suggest: (a) that the net Ca2+ influx in HeLa cells is strongly dependent on the cell internal and external pH; and (b) that the magnitude of this Ca2+ influx controls to a large extent the oscillation frequency. Finally, an inhibition of the histamine induced Ca2+ oscillatory activity was observed following the addition of the Ca(2+)-induced Ca(2+)-release (CICR) inhibitor adenine to the external medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
An increasing amount of evidence demonstrated that the neurotrophic receptor tropomyosin-related kinase B (TrkB) plays a critical role in the development and progression of multiple types of cancer. However, its underlying mechanism in distant metastasis through the circulatory and lymphatic systems in colorectal cancer (CRC) is still unclear. Here we showed that downregulation of TrkB using short hairpin RNA obviously increased anoikis (detachment-induced apoptosis resulting from loss of cell–matrix interactions) sensitivity of CRC cells in vitro. Furthermore, using tail vein injection model, we confirmed that silencing TrkB significantly inhibited metastasis of CRC cells in vivo. Conversely, overexpression of TrkB obviously protected CRC cells from anoikis in vitro. Both loss- and gain-of-functional experiments indicated that TrkB could be a functional molecule in anti-anoikis of CRC cells. Mechanistically, we found that protein kinase B (PKB, also known as Akt) signaling pathway was a functional link in TrkB-induced anoikis suppression in CRC cells. Phosphorylation levels of Akt are closely related with the expression pattern of TrkB in CRC cells and inhibition of Akt activation robustly induces anoikis of CRC cells in vitro. In addition, our clinical investigation showed that high TrkB expression levels in CRC patients were associated with lymph node metastasis, distant metastasis and unfavourable prognosis. Thus, based on our results, this study suggests that an important function of TrkB is to protect CRC cells from anoikis in the circulatory and lymphatic systems, and that TrkB could be a promising candidate in CRC therapy, especially in the inhibition of cancer metastasis.  相似文献   

15.
We were interested in investigating the behaviour of a cardiac electrophysiological model including coupled pacemaker (PM) and nonpacemaker (NPM) cells. To this aim, a modified version of the model of Van Capelle and Durrer was used. First, few discrete values were assigned to coupling resistance (CR) and respective cell sizes and numerical simulations versus time showed three possible kinds of response pattern: sustained rhythmic activity, subthreshold oscillations, and complete inhibition. Then, after setting a fixed value to PM cell size, we undertake a thorough study of the system by using bifurcation-continuation techniques and CR was chosen as the continuation parameter. On the maximum action potential — CR plane representation, we could describe five behavioural zones: complete inhibition, coexistence of complete inhibition and NPM large oscillations, NPM large oscillations, coexistence of NPM large oscillations and subthreshold oscillations, subthreshold oscillations. Within the zones of qualitatively different coexisting solutions, a detailed exploration clearly demonstrated the presence of hysteresis cycles. Indeed, the status of the system depended on its immediate previous story within narrow ranges of CR values. Such a coexistence of stable solutions for identical values of CR may suggest an explanation of the intermittant activity elicited from abnormal ectopic foci observed in certain ventricular rhythm disturbances. In addition, a Hopf bifurcation point, from which emerged stationary and periodic solutions, was followed on the PM cell size — CR plane and from this representation we could deduce that the smaller the PM cell, the higher the CR must be for the PM cell to escape from the NPM cell inhibition.  相似文献   

16.
Pancreatic beta-cells exhibit bursting oscillations with a wide range of periods. Whereas periods in isolated cells are generally either a few seconds or a few minutes, in intact islets of Langerhans they are intermediate (10-60 s). We develop a mathematical model for beta-cell electrical activity capable of generating this wide range of bursting oscillations. Unlike previous models, bursting is driven by the interaction of two slow processes, one with a relatively small time constant (1-5 s) and the other with a much larger time constant (1-2 min). Bursting on the intermediate time scale is generated without need for a slow process having an intermediate time constant, hence phantom bursting. The model suggests that isolated cells exhibiting a fast pattern may nonetheless possess slower processes that can be brought out by injecting suitable exogenous currents. Guided by this, we devise an experimental protocol using the dynamic clamp technique that reliably elicits islet-like, medium period oscillations from isolated cells. Finally, we show that strong electrical coupling between a fast burster and a slow burster can produce synchronized medium bursting, suggesting that islets may be composed of cells that are intrinsically either fast or slow, with few or none that are intrinsically medium.  相似文献   

17.
A growing body of evidence suggests that ribosome-inactivating proteins (RIPs) remove adenine moieties not only from rRNA, but also from DNA--an effect leading to DNA damage in cultured cells. We herein report that two distinct RIPs of bacterial (shiga toxin 1, Stx1) and plant (ricin) origin, inhibit the repair of the DNA lesions generated by hydrogen peroxide in cultured human cells. This effect is unrelated either to inhibition of protein synthesis or to depletion of cellular antioxidant defenses and is likely to derive from direct interactions with cellular DNA repair machinery. Therefore, the genotoxicity of these toxins on mammalian cells seems to be a complex phenomenon resulting from the balance between direct (DNA damaging activity), indirect (DNA repair inhibition) effects and the eventual presence of other DNA damaging species. In particular, with regard to Stx1, it could be hypothesized that Stx-producing bacteria increase the risk of transformation of surrounding, inflamed tissues in the course of human infections.  相似文献   

18.
Suspended cells can at times be seen to spin when in an ac electric field. The phenomenon is observed to be linked to cell colony age. We can now understand this in terms of the applied field acting synchronously upon a natural oscillating electric dipole associated with cell division. The dipole field strength thus estimated from spin drag agrees with the value earlier determined by the dielectrophoretic attraction (a non-uniform field effect on neutral bodies) of dividing cells for polarizable powders.Neither the source nor the role of the demonstrated rf electrical oscillations (about 10 000 Hz) of the dividing cells is as yet known. Whether the oscillations are necessary or incidental, is to be determined.  相似文献   

19.
Although yeast are unicellular and comparatively simple organisms, they have a sense of time which is not related to reproduction cycles. The glycolytic pathway exhibits oscillatory behaviour, i.e. the metabolite concentrations oscillate around phosphofructokinase. The frequency of these oscillations is about 1 min when using intact cells. Also a yeast cell extract can oscillate, though with a lower frequency. With intact cells the macroscopic oscillations can only be observed when most of the cells oscillate in concert. Transient oscillations can be observed upon simultaneous induction; sustained oscillations require an active synchronisation mechanism. Such an active synchronisation mechanism, which involves acetaldehyde as a signalling compound, operates under certain conditions. How common these oscillations are in the absence of a synchronisation mechanism is an open question. Under aerobic conditions an oscillatory metabolism can also be observed, but with a much lower frequency than the glycolytic oscillations. The frequency is between one and several hours. These oscillations are partly related to the reproductive cycle, i.e. the budding index also oscillates; however, under some conditions they are unrelated to the reproductive cycle, i.e. the budding index is constant. These oscillations also have an active synchronisation mechanism, which involves hydrogen sulfide as a synchronising agent. Oscillations with a frequency of days can be observed with yeast colonies on plates. Here the oscillations have a synchronisation mechanism which uses ammonia as a synchronising agent.  相似文献   

20.
Oscillations in citric acid cycle intermediates have never been previously reported in any type of cell. Here we show that adding pyruvate to isolated mitochondria from liver, pancreatic islets, and INS-1 insulinoma cells or adding glucose to intact INS-1 cells causes sustained oscillations in citrate levels. Other citric acid cycle intermediates measured either did not oscillate or possibly oscillated with a low amplitude. In INS-1 mitochondria citrate oscillations are in phase with NAD(P) oscillations, and in intact INS-1 cells citrate oscillations parallel oscillations in ATP, suggesting that these processes are co-regulated. Oscillations have been extensively studied in the pancreatic beta cell where oscillations in glycolysis, NAD(P)/NAD(P)H and ATP/ADP ratios, plasma membrane electrical activity, calcium levels, and insulin secretion have been well documented. Because the mitochondrion is the major site of ATP synthesis and NADH oxidation and the only site of citrate synthesis, mitochondria need to be synchronized for these factors to oscillate. In suspensions of mitochondria from various organs, most of the citrate is exported from the mitochondria. In addition, citrate inhibits its own synthesis. We propose that this enables citrate itself to act as one of the cellular messengers that synchronizes mitochondria. Furthermore, because citrate is a potent inhibitor of the glycolytic enzyme phosphofructokinase, the pacemaker of glycolytic oscillations, citrate may act as a metabolic link between mitochondria and glycolysis. Citrate oscillations may coordinate oscillations in mitochondrial energy production and anaplerosis with glycolytic oscillations, which in the beta cell are known to parallel oscillations in insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号