首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel Gram-positive, aerobic, actinobacterial strain, CF6/1T, was isolated in 2007 during environmental screening of arid desert soil in the Sahara near to Ourba, Chad. The isolate was found to grow best in a temperature range of 20–37 °C and at pH 6.0–8.5 and showed no NaCl tolerance, forming black-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics determined for the isolate match those previously described for members of the genus Geodermatophilus. The DNA G + C content of the novel strain was determined to be 74.9 mol %. The peptidoglycan was found to contain meso-diaminopimelic acid as the diagnostic diamino acid. The main phospholipids were determined to be phosphatidylethanolamine, phosphatidylinositol, phosphatidylcholine, diphosphatidylglycerol and traces of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose as the diagnostic sugar. The major cellular fatty acids were found to be the branched-chain saturated acids iso-C16:0 and iso-C15:0, as well as C17:1ω8c. The 16S rRNA gene sequence shows 97.5–97.9 % sequence identity with the four validly named or at least effectively published members of the genus: Geodermatophilus obscurus (97.5 %), Geodermatophilus arenarius (97.7 %), Geodermatophilus ruber (97.9 %) and Geodermatophilus nigrescens (97.9 %). Based on the results from this polyphasic taxonomic analysis and DNA–DNA hybridizations with all type strains of the genus, we propose that strain CF6/1T represents a novel species, Geodermatophilus siccatus, with the type strain CF6/1T = DSM 45419T = CCUG 62765T = MTCC 11414T.  相似文献   

2.
A Gram-stain positive, non-motile, rod-shaped bacterium, designated strain 1111S-42T, was isolated from the East Siberian Sea. The organism was found to grow at 4–30 °C, pH 7.0–8.5 and in 0–8 % (w/v) NaCl, with optimal growth occurring at 28 °C, pH 7.5 and in 1 % NaCl. Based on 16S rRNA gene sequence similarity studies, strain 1111S-42T was found to belong to the genus Sporosarcina and to be most closely related to Sporosarcina contaminans CCUG53915T (97.3 %) and Sporosarcina soli I80T (97.2 %). The main polar lipids were found to include diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant menaquinone was identified as MK-7. The major cellular fatty acids were identified as anteiso-C15:0 (34.4 %), iso-C15:0 (29.8 %) and anteiso-C17:0 (22.4 %). The DNA G+C content of strain 1111S-42T was determined to be 39 mol %. The values of DNA–DNA relatedness between the strain 1111S-42T and related type strains of the genus Sporosarcina were less than 30 %. Based on the phylogenetic analysis, along with extensive physiological and chemotaxonomic testing, we conclude that the bacterium represents a novel species of the genus Sporosarcina, for which the name Sporosarcina siberiensis sp. nov. is proposed. The type strain is strain 1111S-42T (=CGMCC 1.12516T = LMG 27494T).  相似文献   

3.
4.
Two halophilic archaea, strains GX21T and R35T, were isolated from a marine solar saltern and an aquaculture farm in China, respectively. Cells of the two strains were observed to be pleomorphic, flat, to contain gas vesicles, stain Gram-negative and produce red-pigmented colonies. Strain GX21T was found to be able to grow at 25–50 °C (optimum 37 °C), at 2.6–4.8 M NaCl (optimum 3.4 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–8.5 (optimum pH 6.5) while strain R35T was found to be able to grow at 25–45 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0–0.7 M MgCl2 (optimum 0.03 M MgCl2) and at pH 5.5–9.5 (optimum pH 6.5–7.0). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 15 % (w/v) for strain GX21T and 12 % (w/v) for strain R35T. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid and a minor lipid chromatographically identical to sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. 16S rRNA gene sequence analysis revealed that strains GX21T and R35T show 97.1 % sequence similarity to each other and are closely related to Haloplanus aerogenes TBN37T (96.8 and 95.8 %), Haloplanus vescus RO5-8T (96.7 and 96.1 %), Haloplanus salinus YGH66T (96.4 and 95.8 %) and Haloplanus natans JCM 14081T (96.3 and 95.4 %). The rpoB′ gene similarity between strains GX21T and R35T is 90.5 % and show 88.5–90.8 % similarity to the Haloplanus species with validly published names. The DNA G+C content of strain GX21T and R35T were determined to be 65.8 and 66.0 mol%, respectively. The DNA–DNA hybridization values between strain GX21T and strain R35T, and the two strains with the Haloplanus species with validly published names, showed less than 50 % DNA–DNA relatedness. It was concluded that strain GX21T (=CGMCC 1.10456T = JCM 17092T) and strain R35T (=CGMCC 1.10594 T = JCM 17271T) represent two new species of Haloplanus, for which the names Haloplanus litoreus sp. nov. and Haloplanus ruber sp. nov. are proposed.  相似文献   

5.
Two halophilic archaeal strains, YC87T and YCA11, were isolated from Yuncheng salt lake in Shanxi, China. Cells of the two strains were observed to be pleomorphic rod-shaped, stained Gram-negative and produced red-pigmented colonies. Strain YC87T was able to grow at 20–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.1 M NaCl), at 0.05–1.0 M MgCl2 (optimum 0.3 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.0) while strain YCA11 was able to grow at 20–50 °C (optimum 37 °C), at 2.1–4.8 M NaCl (optimum 3.1 M NaCl), at 0.01–0.7 M MgCl2 (optimum 0.1 M MgCl2) and at pH 6.0–9.0 (optimum pH 7.5). The cells of both isolates were observed to lyse in distilled water. The minimum NaCl concentrations that prevented cell lysis were determined to be 8 % (w/v) for strain YC87T and 12 % (w/v) for strain YCA11. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether; another major glycolipid and trace amounts of several unidentified lipids were also detected. The 16S rRNA gene sequences of the two strains were 99.8 % identical, showing 93.2–98.2 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene similarity between strains YC87T and YCA11 was 99.3 % and showed 87.5–95.2 % similarity to the closest relative members of the genus Halorubrum. The DNA G+C content of strains YC87T and YCA11 were determined to be 64.9 and 64.5 mol%, respectively. The DNA–DNA hybridization value between strain YC20T and strain YC77 was 87 % and the two strains showed low DNA–DNA relatedness with Halorubrum cibi JCM 15757T and Halorubrum aquaticum CGMCC 1.6377T, the most related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strains YC87T and YCA11 represent a novel species of the genus Halorubrum, for which the name Halorubrum rubrum sp. nov. is proposed. The type strain is YC87T (=CGMCC 1.12124T = JCM 18365T).  相似文献   

6.
A novel non-sporulating, non-motile, catalase-positive, oxidase-negative, facultatively anaerobic, Gram-positive coccus, designated strain JSM 078151T, was isolated from an intertidal sediment sample collected from Naozhou Island in the South China Sea, China. Growth was found to occur in the presence of 0–15 % (w/v) NaCl (optimum 0.5–3 % (w/v) NaCl), at pH 6.5–10.5 (optimum pH 7.0–8.0) and at 5–35 °C (optimum 25–30 °C). The peptidoglycan type was determined to be A3a, containing lysine, glutamic acid and alanine. The major cellular fatty acid identified was anteiso-C15:0 and the predominant menaquinones are MK-7 and MK-8. The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylglycerol, glycolipid and one unidentified phospholipid. The genomic DNA G+C content of strain JSM 078151T was determined to be 55.2 mol%. A phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain JSM 078151T should be assigned to the genus Rothia, and was most closely related to Rothia nasimurium CCUG 35957T (98.3 % sequence similarity), followed by Rothia amarae J18T (97.5 %) and Rothia terrae L-143T (97.3 %). A combination of phylogenetic analysis, DNA–DNA relatedness values, phenotypic characteristics and chemotaxonomic data supports the suggestion that strain JSM 078151T represents a novel species of the genus Rothia, for which the name Rothia marina sp. nov. is proposed. The type strain is JSM 078151T (= DSM 21080T = KCTC 19432T).  相似文献   

7.
The taxonomic position of bacterial strain, designated 15J16-1T3AT, recovered from a soil sample was established using a polyphasic approach. Phylogenic analysis based on the 16S rRNA gene sequence showed that strain 15J16-1T3AT belonged to the family Cytophagaceae, phylum Bacteroidetes, and was most closely related to ‘Larkinella harenae’ 15J9-9 (95.9% similarity), Larkinella ripae 15J11-11T (95.6%), Larkinella bovis M2TB15T (94.7%), Larkinella arboricola Z0532T (93.9%), and Larkinella insperata LMG 22510T (93.5%). Cells were rod-shaped, Gram-stain-negative, aerobic, and nonmotile. The isolate grew on NA, R2A, TSA, but not on LB agar. The strain was able to grow at temperature range from 10°C to 30°C with an optimum at 25°C and pH 6–8. Menaquinone MK-7 was the predominant respiratory quinone. The major cellular fatty acids comprised C16:1ω5c (48.6%) and C15:0 iso (24.1%). Phosphatidylethanolamine, phosphatidylserine, and an unidentified lipid were the major polar lipids. The G + C content of the genomic DNA was 49.5 mol%. Strain 15J16-1T3AT could be distinguished from its closest phylogenetic neighbors based on its phenotypic, genotypic, and chemotaxonomic features. Therefore, the isolate is considered to represent a novel species in the genus Larkinella, for which the name Larkinella roseus sp. nov. is proposed. The type strain is 15J16-1T3AT (= KCTC 52004T = JCM 31991T).  相似文献   

8.
A novel, Gram-positive, moderately halophilic bacterium, oxidase- and catalase-positive designated FarDT was isolated from sediments of a saline lake located in Taghit, 93 km from Bechar, southwest of Algeria. Cells were rod-shaped, endospore forming, and motile. Growth occurred at 15–40 °C (optimum, 35 °C), pH 6.0–12.0 (optimum, 7.0) and in the presence of 1–20 % NaCl (optimum, 10 %). Strain FarDT used glucose, mannitol, melibiose, d-mannose, and 5 ketogluconate. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, and three phospholipids; MK-7 is the predominant menaquinone. The predominant cellular fatty acids were anteiso C15:0, anteiso C17:0, C20:0, and anteiso C19:0. The DNA G+C content was 42.1 mol%. Phylogenetic analysis of the small-subunit ribosomal RNA gene sequence indicated that strain FarDT had as its closest relative Virgibacillus salinus (similarity of 96.3 %). Based on phenotypic, phylogenetic, and taxonomic characteristics, strain FarDT is proposed as a novel species of the genus Virgibacillus within the order Clostridiales, for which the name V. natechei is proposed. The type strain is FarDT (=DSM 25609T = CCUG 62224T).  相似文献   

9.
A strain designated as S85T was isolated from a seaweed collected from coastal area of Chuuk State in Micronesia. The strain was gram-negative, rod-shaped, and non-motile and formed yellow colonies on the SWY agar (0.2 % yeast extract and 1.5 % agar in seawater) and Marine agar 2216. The strain grew at pH 5–9 (optimum, pH 8), at 15–40 °C (optimum, 25–28 °C), and with 1–9 % (w/v) NaCl (optimum, 3 %). The phylogenetic analysis based on 16S rRNA gene sequence showed that strain S85T was related to Lutibacter litoralis CL-TF09T and Maritimimonas rapanae A31T with 91.4 % and with 90.5 % similarity, respectively. The dominant fatty acids were iso-C15:0, iso-C15:0 3-OH and iso-C17:0 3-OH, C16:0 3-OH and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH). The major isoprenoid quinone was MK-6. The DNA G+C content of the type strain was 34.6 mol %. The major polar lipids were phosphatidylethanolamine, an unknown glycolipid and two unknown polar lipids. Based on this polyphasic taxonomic data, strain S85T stands for a novel species of a new genus, and we propose the name Ochrovirga pacifica gen. nov., sp. nov. The type strain of O. pacifica is S85T (=KCCM 90106 =JCM 18327T).  相似文献   

10.
A Gram-stain-negative, non-motile, non-spore-forming, rod-shaped, aerobic bacterium, designated 15J9-6T, was isolated from beach soil on Jeju Island, South Korea. Strain 15J9-6T, grew at 10–30°C (optimum growth at 25°C) and pH 7–8 (optimum growth at pH 7) on R2A, NA, and TSA agar. Phylogenetically, the strain was closely related to members of the genus Spirosoma (92.3–90.1% 16S rRNA gene sequence similarities) and showed highest sequence similarity to Spirosoma panaciterrae DSM 21099T (92.3%). The G+C content of the genomic DNA of strain 15J9-6T was 45.7 mol%. The strain contained phosphatidylethanolamine, two unidentified aminophospholipids, an unidentified phospholipid, and an unidentified lipid as the major polar lipids; menaquinone MK-7 as the predominant respiratory quinone and summed feature 3 (C16:1 ω6c/C16:1 ω7c; 30.1%), C16:1 ω5c (23.1%), iso C15:0 (13.3%), and C16:0 (8.4%) as the major fatty acids which supported the affiliation of strain 15J9-6T to the genus Spirosoma. The results of physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 15J9-6T from recognized Spirosoma species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain 15J9-6T represents a novel species of the genus Spirosoma, for which the name Spirosoma daeguensis sp. nov. is proposed. The type strain is 15J9-6T (=KCTC 52036T =JCM 31995T)  相似文献   

11.
An orange-colored bacterial strain, ICM 1–15T, was isolated from greenhouse soil. The 16S rRNA gene sequence of this strain showed the highest sequence similarity with Niabella ginsengisoli GR10-1T (95.2%) and Niabella yanshanensis CCBAU 05354T (95.0%) among the type strains. The strain ICM 1–15T was a strictly aerobic, Gram-negative, non-spore-forming, non-motile, flexirubin pigment-producing, short rod-shaped bacterium. The strain grew at 15–35°C (optimum, 25°C), at a pH of 5.0–8.5 (optimum, pH 6.5), and in the presence of 0–3% NaCl (optimum, 1%). The DNA G+C content of strain ICM 1–15T was 43.6 mol%. It contained MK-7 as the major isoprenoid quinone and iso-C15:0 (38.9%), iso-C15:1 G (20.3%), and iso-C17:0 3-OH (12.9%) as the major fatty acids. On the basis of evidence from our polyphasic taxonomic study, we concluded that strain ICM 1–15T should be classified within a novel species of the genus Niabella, for which the name Niabella terrae sp. nov. is proposed. The type strain is ICM 1–15T (=KACC 17443T =JCM 19502T).  相似文献   

12.
A Gram-negative, motile, non-spore forming, rod shaped aerobic bacterium, designated strain SSW084T, was isolated from a surface seawater sample collected at Espalamaca (38°33′N; 28°39′W), Azores. Growth was found to occur from 15 to 40 °C (optimum 30 °C), at pH 7.0–9.0 (optimum pH 7.0) and with 25–100 % seawater or 0.5–7.0 % NaCl in the presence of Mg2+ and Ca2+; no growth was found with NaCl alone. Colonies on seawater nutrient agar were observed to be punctiform, white, convex, circular, smooth, and translucent. Strain SSW084T did not grow on Zobell marine agar and tryptic soy agar even when seawater supplemented. The major respiratory quinone was found to be Q-10 and the G + C content was determined to be 61.9 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain SSW084T belongs to the genus Roseovarius and that its closest neighbours are Roseovarius tolerans EL-172T, Roseovarius mucosus DFL-24T and Roseovarius lutimaris 112T with 95.7, 95.4 and 95.3 % sequence similarity respectively. The remaining species of Roseovarius showed <95 % similarity. The polar lipids of strain SSW084T were determined to be phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unidentified lipid and one unidentified aminolipid. The major fatty acids identified were identified as C18:1 ω7c (52.5 %) and C16:0 (13.8 %). On the basis of phenotypic, molecular and chemotaxonomic characteristics, strain SSW084T is considered to represent a novel species of the genus Roseovarius, for which Roseovarius azorensis sp. nov is proposed. The type strain is SSW084T (=KCTC 32421T = MTCC 11812T).  相似文献   

13.
Halophilic archaeal strain YGH66T was isolated from the Yinggehai marine solar saltern near the Sanya city of Hainan Province, China. Cells were pleomorphic, flat, stained Gram-negative, and produced pink-pigmented colonies. Strain YGH66T was able to grow at 20–50 °C (optimum 37 °C), at 0.9–4.8 M NaCl (optimum 3.1 M NaCl), at 0.005–1.0 M MgCl2 (optimum 0.05 M MgCl2), and at pH 6.0–8.0 (optimum pH 7.0). The cells of strain YGH66T were lysed in distilled water, and the minimum NaCl concentration that prevented cell lysis was 5 % (w/v). The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid (GL1) chromatographically identical to sulfated mannosyl glucosyl diether and a minor unidentified lipid (GL2), respectively. On the basis of 16S rRNA gene sequence analysis, strain YGH66T was closely related to Haloplanus natans JCM 14081T, Haloplanus aerogenes TBN37T, and Haloplanus vescus RO5-8T with the similarities of 98.0, 97.6, and 96.9 %, respectively. The rpoB′ gene similarity between strain YGH66T and the current three members of Haloplanus were 90.4–92.8 %. The DNA G+C content of strain YGH66T was 67.2 mol %. The DNA–DNA hybridization values between strain YGH66T and three members of Haloplanus, H. natans JCM 14081T, H. aerogenes TBN37T, H. vescus RO5-8T were 50, 46 and 39 %, respectively. It was concluded that strain YGH66T represents a novel species of the genus Haloplanus, for which the name Haloplanus salinus sp. nov. is proposed. The type strain is YGH66T (=CGMCC 1.12127T = JCM 18368T).  相似文献   

14.
A novel mesophilic, methylotrophic, methanogenic archaeon, designated strain EK1T, was enriched and isolated from wetland sediment. Phylogenetic analysis showed that strain EK1T was affiliated with the genus Methanomethylovorans within the family Methanosarcinaceae, and shared the highest 16S rRNA and methyl-coenzyme M reductase alpha-subunit gene sequence similarity with the type strain of Methanomethylovorans hollandica (98.8 and 92.6 %, respectively). The cells of strain EK1T were observed to be Gram-negative, non-motile and irregular cocci that did not lyse in 0.1 % (w/v) sodium dodecyl sulfate. Methanol, mono-, di- and trimethylamine, dimethyl sulfide and methanethiol were found to be used as catabolic and methanogenic substrates, whereas H2/CO2, formate, 2-propanol and acetate were not. Growth was observed at 25–40 °C (optimum, 37 °C), at pH 5.5–7.5 (optimum, pH 6.0–6.5) and in the presence of 0–0.1 M NaCl (optimum, 0 M). Growth and methane production rates were stimulated in the presence of H2/CO2 although methane production and growth yields were not significantly affected; acetate, formate, 2-propanol and CO/CO2/N2 did not affect methane production. CoCl2 (0.6–2.0 μM) and FeCl2 (25 mg/l) stimulated growth, while yeast extract and peptone did not. The DNA–DNA hybridization experiment revealed a relatedness of <20 % between EK1T and the type strains of the genus Methanomethylovorans. The DNA G+C content of strain EK1T was determined to be 39.2 mol%. Based on the polyphasic taxonomic study, strain EK1T represents a novel species belonging to the genus Methanomethylovorans, for which the name Methanomethylovorans uponensis sp. nov. is proposed. The type strain is strain EK1T(=NBRC 109636T = KCTC 4119T = JCM 19217T).  相似文献   

15.
The halophilic archaeal strain GX71T was isolated from the Gangxi marine solar saltern near the Weihai city of Shandong Province, China. Cells of the strain were pleomorphic and lysed in distilled water, stained Gram-negative and formed red-pigmented colonies. Strain GX71T was able to grow at 25–45 °C (optimum 30 °C), in the presence of 1.7–4.8 M NaCl (optimum 2.6 M NaCl), with 0.005–0.7 M MgCl2 (optimum 0.05 M MgCl2) and at pH 5.5–9.5 (optimum pH 7.0–7.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 10 % (w/v). The major polar lipids of the strain were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-3) and an unidentified lipid was also detected. The 16S rRNA gene sequence of strain GX71T showed 94.0–97.0 % similarity to members of the genus Halorubrum of the family Halobacteriaceae. The rpoB′ gene sequence of strain GX71T was 87.3–93.4 % similarity to current members of the genus Halorubrum. The DNA G+C content of GX71T was 67.1 mol%. Strain GX71T showed low DNA–DNA relatedness with Halorubrum lipolyticum CGMCC 1.5332T, Halorubrum saccharovorum CGMCC 1.2147T, Halorubrum kocurii CGMCC 1.7018T and Halorubrum arcis CGMCC 1.5343T, the most closely related members of the genus Halorubrum. The phenotypic, chemotaxonomic and phylogenetic properties suggest that strain GX71T represents a novel species of the genus Halorubrum, for which the name Halorubrum salinum sp. nov. is proposed. The type strain is GX71T (= CGMCC 1.10458T = JCM 17093T).  相似文献   

16.
A novel Gram-positive, aerobic, actinobacterial strain, CF5/4T, was isolated in 2007 during an environmental screening of arid desert soil in Ouré Cassoni, Chad. The isolate grew best in a temperature range of 28–40?°C and at pH 6.0–8.5, with 0–1?% (w/v) NaCl, forming brown-coloured and nearly circular colonies on GYM agar. Chemotaxonomic and molecular characteristics of the isolate matched those described for members of the genus Geodermatophilus. The DNA G?+?C content of the novel strain was 75.9?mol?%. The peptidoglycan contained meso-diaminopimelic acid as diagnostic diaminoacid. The main phospholipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol, diphosphatidylglycerol and a small amount of phosphatidylglycerol; MK-9(H4) was identified as the dominant menaquinone and galactose as diagnostic sugar. The major cellular fatty acids were branched-chain saturated acids: iso-C15:0 and iso-C16:0. The 16S rRNA gene showed 96.2–98.3?% sequence identity with the three members of the genus Geodermatophilus: G. obscurus (96.2?%), G. ruber (96.5?%), and G. nigrescens (98.3?%). Based on the chemotaxonomic results, 16S rRNA gene sequence analysis and DNA–DNA hybridization with the type strain of G. nigrescens, the isolate is proposed to represent a novel species, Geodermatophilus arenarius (type strain CF5/4T?=?DSM 45418T?=?MTCC 11413T?=?CCUG 62763T).  相似文献   

17.
Halophilic archaeal strain TGN-42-S1T was isolated from the Tanggu marine solar saltern, China. Cells from strain TGN-42-S1T were observed to be pleomorphic rods, stained Gram-negative, and formed red-pigmented colonies on solid media. Strain TGN-42-S1T was found to be able to grow at 20–50 °C (optimum 35–37 °C), at 1.7–4.8 M NaCl (optimum 3.1 M), at 0–1.0 M MgCl2 (optimum 0.1 M), and at pH 5.0–9.0 (optimum pH 7.0–7.5). The cells lysed in distilled water, and the minimal NaCl concentration to prevent cell-lysis was found to be 10 % (w/v). The major polar lipids of the strain were phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, galactosyl mannosyl glucosyl diether (TGD-1), sulfated galactosyl mannosyl glucosyl diether (S-TGD-1), sulfated galactosyl mannosyl galactofuranosyl glucosyl diether (S-TeGD), and three unidentified glycolipids which were chromatographically identical to those of the Halobacterium species. The 16S rRNA gene and rpoB′ gene of strain TGN-42-S1T were phylogenetically related to the corresponding genes of Halobacterium jilantaiense CGMCC 1.5337T (98.8 and 93.5 % nucleotide identity, respectively), Halobacterium salinarum CGMCC 1.1958T (98.4 and 91.9 %), and Halobacterium noricense JCM 15102T (96.9 and 91.1 %). The DNA G + C content of strain TGN-42-S1T was determined to be 69.2 mol %. Strain TGN-42-S1T showed low DNA–DNA relatedness with Hbt. jilantaiense CGMCC 1.5337T and Hbt. salinarum CGMCC 1.1958T, the most closely related members of the genus Halobacterium. The phenotypic, chemotaxonomic, and phylogenetic properties suggested that strain TGN-42-S1T (=CGMCC 1.12575T =JCM 19908T) represents a new species of Halobacterium, for which the name Halobacterium rubrum sp. nov. is proposed.  相似文献   

18.
Two extremely halophilic archaeal strains GX1T and GX60 were isolated from the Gangxi marine solar saltern, China. Cells from the two strains were observed to be rod-shaped and stained Gram-negative, with red-pigmented colonies. Strains GX1T and GX60 were found to be able to grow at 25–50 °C (optimum 37 °C), at 1.4–4.8 M NaCl (optimum 2.6 M), at pH 5.5–9.5 (optimum pH 7.0) and neither strain required Mg2+ for growth. The cells lysed in distilled water and the minimal NaCl concentration to prevent cell-lysis was found to be 8 % (w/v). The major polar lipids of the two strains were identified as phosphatidic acid, phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and three glycolipids chromatographically identical to those of Haloarchaeobius iranensis IBRC-M 10013T. 16S rRNA gene analysis revealed that each strain had two dissimilar 16S rRNA genes and both strains were phylogenetically related to Hab. iranensis IBRC-M 10013T (94.9–98.9 % nucleotide identity). The rpoB′ gene similarity between strains GX1T and GX60, and between these strains and Hab. iranensis IBRC-M 10013T were found to be 99.6, 96.0 and 95.8 %, respectively. The DNA G + C content of strain GX1T and GX60 were determined to be 67.7 and 67.8 mol %, respectively. The DNA–DNA hybridization value of strains GX1T and GX60 was 86 % and the two strains showed low DNA–DNA relatedness with Hab. iranensis IBRC-M 10013T (38 and 32 %). It was concluded that strain GX1T (= CGMCC 1.10390T = JCM 17114T) and strain GX60 (= CGMCC 1.10389 = JCM 17120) represent a new species of Haloarchaeobius, for which the name Haloarchaeobius litoreus sp. nov. is proposed.  相似文献   

19.
Two extremely halophilic archaea, designated YIM 90917 and YIM 93656T, were isolated from saline soils in Yunnan province and Lup nur region in Xinjiang province, western China, respectively. Colonies of the two strains were observed to be pink-pigmented. The cells were found to be Gram-stain negative, coccoid and non-motile. The organisms were found to be aerobic and could grow in an NaCl range of 6–35 % (optimum 18 %), temperatures ranging from 25 to 50 °C (optimum 37–42 °C), pH range from 6.0–8.5 (optimum pH 7.0–7.5) and Mg2+ range from 0 to 1.5 M (optimum 0.5–1.0 M); Mg2+ was not necessary for growth. Cells were not observed to lyse in distilled water. Strains YIM 90917 and YIM 93656T showed the highest 16S rRNA gene sequence similarities to Haladaptatus cibarius JCM 15962T (97.6 and 97.9 %, respectively). In addition, the DNA–DNA hybridizations of strains YIM 90917 and YIM 93656T with type strains H. cibarius JCM 15962T, Haladaptatus litoreus JCM 15771T and Haladaptatus paucihalophilus JCM 13897T were 37.2 and 38.2 %, 36.6 and 39.0 % and 27.9 and 27.7 %, respectively. The DNA G+C contents of strains YIM 90917 and YIM 93656T were determined to be 56.0 and 57.4 mol%. The major polar lipids of the two strains were identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl glucosyl diether and other four unidentified glycolipids. On the basis of physiological, chemotaxonomic data and phylogenetic analysis, the strains YIM 90917 and YIM 93656T can be classified as a novel species of the genus Haladaptatus, for which the name Haladaptatus pallidirubidus sp. nov. is proposed. The type strain is YIM 93656T (=JCM 17504T = CCTCC AB2010454T).  相似文献   

20.
A Gram-reaction-negative, strictly aerobic, non-motile, non-spore-forming, and rod-shaped bacterial strain designated KHI28T was isolated from sediment in Gapcheon (river) and its taxonomic position was investigated using a polyphasic approach. Strain KHI28T grew at 10–42°C and at pH 5.5–8.5 on R2A and nutrient agar without additional NaCl as a supplement. Strain KHI28T possessed β-glucosidase activity, which was responsible for its ability to transform ginsenosides Rb1 and Re (ones of the dominant active components of ginseng) to C-K and Rg2, respectively. On the basis of 16S rRNA gene sequence similarity, strain KHI28T was shown to belong to the family Sphingobacteriaceae and to be related to Mucilaginibacter dorajii DR-f4T (97.9% sequence similarity), M. polysacchareus DRP28T (97.3%), and M. lappiensis ANJLI2T (97.2%). The G+C content of the genomic DNA was 45.8%. The predominant respiratory quinone was MK-7 and the major fatty acids were summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c), iso-C15:0 and C16:0. DNA and chemotaxonomic data supported the affiliation of strain KHI28T to the genus Mucilaginibacter. Strain KHI28T could be differentiated genotypically and phenotypically from the recognized species of the genus Mucilaginibacter. The isolate therefore represents a novel species, for which the name Mucilaginibacter ginsenosidivorax sp. nov. is proposed, with the type strain KHI28T (=KACC 14955T =LMG 25804T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号