首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of using a microalga Chlorella vulgaris YSW-04 was investigated for removal of nutrients from piggery wastewater effluent. The consequent lipid production by the microalga was also identified and quantitatively determined. The wastewater effluent was diluted to different concentrations ranging from 20 to 80 % of the original using either synthetic media or distilled water. The dilution effect on both lipid production and nutrient removal was evaluated, and growth rate of C. vulgaris was also monitored. Dilution of the wastewater effluent improved microalgal growth, lipid productivity, and nutrient removal. The growth rate of C. vulgaris was increased with decreased concentration of piggery wastewater in the culture media regardless of the diluent type. Lipid production was relatively higher when using synthetic media than using distilled water for dilution of wastewater. The composition of fatty acids accumulated in microalgal biomass was dependent upon both dilution ratio and diluent type. The microalga grown on a 20 % concentration of wastewater effluent diluted with distilled water was more promising for generating high-efficient biodiesel compared to the other culture conditions. The highest removal of inorganic nutrients was also achieved at the same dilution condition. Our results revealed the optimal pretreatment condition for the biodegradation of piggery wastewater with microalgae for subsequent production of high-efficient biodiesel.  相似文献   

2.
In this study, growth performance and lipid content of two microalgae species Neochloris oleoabundans and Chlorella vulgaris are monitored by using three different types of sludge waste feedstocks obtained from the water treatment plants located in Bedonia, Borgotaro and Fornovo (Montagna2000 Spa, Province of Parma, Italy). The sludge waste is optimized in order to achieve microalgal growth media and dispose of the sewage sludge produced at the wastewater treatment facilities. Both photoautotrophic and heterotrophic growth conditions are applied to the microalgal cultivations. The growth parameters of microalgae strains such as cell concentration, growth rate, optical density, cell biovolume, photosynthetic pigments and lipid contents are monitored. The amounts of total dried lipid biomass, obtained by the biological conversion of the wet sludge waste, are determined. Lipid production of microalgal cells grown in the medium optimized from sludge waste from the Fornovo site provides the highest amount of microalgal lipid content for N. oleoabundans and C. vulgaris photoautotrophic cultivations, while sludge waste from the Bedonia site provides for N. oleoabundans heterotrophic cultivation.  相似文献   

3.
Microalgae are a promising feedstock for renewable biodiesel production. High productivity of biodiesel production from microalgae is directly related to growth rate as well as lipid content of cells. In the present study, an enrichment process in a continuous cultivation system was developed to screen a high-growth-rate microalga from a mixed culture of microalgal species; Chlorella vulgaris, Chlorella protothecoides, and Chlamydomonas reinhardtii were used as test organisms for our experiments. The time-dependent washout of mixed microalgal pool was executed to successfully enrich the C. reinhardtii, which exhibits the higher growth rate than C. vulgaris and C. protothecoides under turbidostat conditions within 75 h. The domination of C. reinhardtii in the mixed culture was validated by on-line monitoring of growth rate and flowcytometric analysis. For the time-efficient production of microalgal biomass, this screening process has a high potential to segregate the fast-growing microalgal strains from the pool of various uncharacterized microalgal species and random mutants.  相似文献   

4.
Heterotrophic growth of the microalga Chlorella vulgaris Beij. in synthetic as well as sterilized municipal wastewater of a nonindustrialized city was measured. The city wastewater contained high levels of ammonium and nitrate, medium levels of phosphate, and low levels of nitrite and organic molecules and could not support heterotrophic growth of C. vulgaris. Evaluation of 11 known carbon sources for this microalga that were added to standard synthetic wastewater containing the same levels of nitrogen and phosphorus as the municipal wastewater revealed that the best carbon sources for heterotrophic growth were Na‐acetate and d ‐glucose. These provided the highest growth rates and the largest removal of ammonium. Growth increased with concentration of the supplement to an optimum at 0.12 M Na‐acetate. This carbon source was consumed completely within 10 d of incubation. Higher concentrations inhibited the growth of C. vulgaris. The microalgal populations under heterotrophic growth conditions were one level of magnitude higher than that under autotrophic growth conditions that served as a comparison. No growth occurred in the dark in the absence of a carbon source. Na‐acetate was superior to d ‐glucose. In municipal wastewater, when Na‐acetate or d ‐glucose was added, C. vulgaris significantly enhanced ammonium removal under heterotrophic conditions, and its capacity was equal to ammonium removal under autotrophic growth conditions. This study showed that sterilized wastewater can be treated by C. vulgaris under heterotrophic conditions if supplemented with the appropriate organic carbon source for the microalgae.  相似文献   

5.
The present study focused on cost-effective production of microalgal biomass and lipid production on dairy effluent. The novel microalga, Chlorella sp. isolated from the dairy effluent showed high growth and lipid production on the undiluted and two-fold diluted dairy effluent which were four to five times higher than those of Chlorella vulgaris (control). The high growth of Chlorella sp. was thought to be possibly due to its heterotrophic growth capacity, high turbidity, COD, nutrients and trace elements. In contrast, C. vulgaris showed poor heterotrophic and photoautotrophic growth under the highly turbid conditions of dairy effluent. Both Chlorella sp. and C. vulgaris showed similar total FAME (mg FAME/g algal cells). The fatty acid composition analysis revealed that both Chlorella sp. and C. vulgaris possessed major C18 and C20 fatty acids which will be used for biodiesel production. Overall, the novel microalga, Chlorella sp. isolated from the dairy effluent showed high potential for cost-effective algal cultivation and lipid production on dairy effluent without any modification of process.  相似文献   

6.
New microalgal strains that are native to South-East Kazakhstan were isolated and characterized with a view to identifying suitable candidates for biodiesel production. Six strains of chlorophyte algae (named K1–K6) were recovered from environmental samples as axenic cultures, and molecular analysis revealed that five (K1–K5) are strains of Parachlorella kessleri, whereas K6 is a strain of Chlorella vulgaris. A third isolate from Uzbekistan (termed UZ) was also identified as a separate strain of P. kessleri. All strains show high growth rates and an ability to utilize acetate as an exogenous source of fixed carbon. Furthermore, under conditions of nitrogen depletion, all three strains showed a significant accumulation of neutral lipids (triacylglycerides). P. kessleri K5 and C. vulgaris K6 therefore represent promising autochthon strains for large-scale cultivation and biodiesel production in Kazakhstan.  相似文献   

7.
The reuse of wastewater is important for reducing costs involved with algal lipid production. However, nutrient limitations, wastewater‐borne microbes, and mixotrophic growth can significantly affect biomass yields and lipid/biomass ratios. This research compared the growth performances of both Chlorella vulgaris and Pseudokirchneriella subcapitata on domestic wastewater effluent. The experiments were conducted in the presence and absence of wastewater‐borne bacteria, while additionally assessing the impact of distinct nitrate and glucose supplementations. When compared to the sterilized controls, the presence of wastewater‐borne bacteria in the effluent reduced C. vulgaris and P. subcapitata total biomass production by 37% and 46%, respectively. In the corresponding treatments supplemented with glucose and nitrate, total biomass production increased by 12% and 61%, respectively. The highest biomass production of 1.11 and 0.72 g · L?1 was, however, observed in the sterilized treatments with both glucose and nitrate supplementations for C. vulgaris and P. subcapitata, respectively. Lipid to biomass ratios were, on average, threefold higher when only nitrate was introduced in the sterilized treatments for both species (0.4 and 0.5, respectively). Therefore, the combination of nitrate and glucose supplementation is shown to be an important strategy for enhancing algal lipid and biomass production when those algae are grown in the presence of wastewater‐borne bacteria. On the other hand, in the absence of wastewater‐borne bacteria, only nitrate supplementation can significantly improve lipid/biomass ratios.  相似文献   

8.
The challenges which the large scale microalgal industry is facing are associated with the high cost of key operations such as harvesting, nutrient supply and oil extraction. The high-energy input for harvesting makes current commercial microalgal biodiesel production economically unfeasible and can account for up to 50% of the total cost of biofuel production. Co-cultivation of fungal and microalgal cells is getting increasing attention because of high efficiency of bio-flocculation of microalgal cells with no requirement for added chemicals and low energy inputs. Moreover, some fungal and microalgal strains are well known for their exceptional ability to purify wastewater, generating biomass that represents a renewable and sustainable feedstock for biofuel production. We have screened the flocculation efficiency of the filamentous fungus A. fumigatus against 11 microalgae representing freshwater, marine, small (5 µm), large (over 300 µm), heterotrophic, photoautotrophic, motile and non-motile strains. Some of the strains are commercially used for biofuel production. Lipid production and composition were analysed in fungal-algal pellets grown on media containing alternative carbon, nitrogen and phosphorus sources contained in wheat straw and swine wastewater, respectively. Co-cultivation of algae and A. fumigatus cells showed additive and synergistic effects on biomass production, lipid yield and wastewater bioremediation efficiency. Analysis of fungal-algal pellet''s fatty acids composition suggested that it can be tailored and optimised through co-cultivating different algae and fungi without the need for genetic modification.  相似文献   

9.
In this study, an alga-based simultaneous process of treating swine wastewater (SWW) and producing biodiesel was explored. Chlorella vulgaris (UTEX-265) was employed as a model species, and a SWW-based medium was prepared by dilution with tap water. Chlorella vulgaris grew well in the SWW-based medium, and at optimum dilution ratios, it exceeded the conventional culture medium in terms of biomass concentration and productivity. In eightfold diluted SWW, which supported the maximum growth, biomass productivity was 0.247 g L?1 day?1, while the productivity was merely 0.165 g L?1 day?1 in standard tris-acetate-phosphorous (TAP) algal medium. In addition, fatty acid methyl ester (FAME) productivity was greater in the SWW-based medium (0.067 versus 0.058 g L?1 day?1). This enhanced productivity resulted in more than 95 % removal of both nitrogen and phosphorous. All these show that C. vulgaris cultivation is indeed possible in a nutrient-rich wastewater with appropriate dilution, and in so doing, the wastewater can effectively be treated.  相似文献   

10.
Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the optimization of pretreatment of municipal wastewater and aeration conditions in order to enhance the lipid productivity of Scenedesmus obliquus. Results showed that no significant differences were recorded in lipid productivity of S. obliquus grown in primary settled or sterilized municipal wastewater; however, ultrasound pretreatment of wastewater significantly decreased the lipid production. Whereas, aeration rates of 0.2 vvm significantly increased lipid content by 51 %, with respect to the non-aerated culture, which resulted in maximum lipid productivity (32.5 mg L?1 day?1). Furthermore, aeration enrichment by 2 % CO2 resulted in increase of lipid productivity by 46 % over the CO2 non-enriched aerated culture. Fatty acid profile showed that optimized aeration significantly enhanced monounsaturated fatty acid production, composed mainly of C18:1, by 1.8 times over the non-aerated S. obliquus culture with insignificant changes in polyunsaturated fatty acid proportion; suggesting better biodiesel characteristics for the optimized culture.  相似文献   

11.
The use of organic matter such as vegetable oil to produce biodiesel fuel has been a practical technology for a number of years. However, the search for new technologies and raw materials for biodiesel fuel production has gained increased attention recently because of financial and environmental concerns. Of particular interest are raw materials that are not food-related. Microalgae have gained a great deal of attention as a potential biodiesel raw material because of their high growth rates and ability to accumulate oil, bind carbon dioxide, and remove contaminants from wastewater. This article is a literature review of technologies for biodiesel production from microalgae. The technologies relate to microalgal cultivation, microalgal growth enhancement to simultaneously increase biomass and reduce pollution, the preparation of microalgal biomass for biodiesel production, and biodiesel production itself.  相似文献   

12.
Marine microalgae have emerged as important feedstock for liquid biofuel production. The identification of lipid-rich native microalgal species with high growth rate and optimal fatty acid profile and biodiesel properties is the most challenging step in microalgae-based biodiesel production. In this study, attempts have been made to bio-prospect the biodiesel production potential of marine and brackish water microalgal isolates from the west coast of India. A total of 14 microalgal species were isolated, identified using specific molecular markers and based on the lipid content; seven species with total lipid content above 20% of dry cell weight were selected for assessing biodiesel production potential in terms of lipid and biomass productivities, nile red fluorescence, fatty acid profile and biodiesel properties. On comparative analysis, the diatoms were proven to be promising based on the overall desirable properties for biodiesel production. The most potential strain Navicula phyllepta MACC8 with a total lipid content of 26.54 % of dry weight of biomass, the highest growth rate (0.58 day?1) and lipid and biomass productivities of 114 and 431 mgL?1 day?1, respectively, was rich in fatty acids mainly of C16:0, C16:1 and C18:0 in the neutral lipid fraction, the most favoured fatty acids for ideal biodiesel properties. The biodiesel properties met the requirements of fuel quality standards based on empirical estimation. The marine diatoms hold a great promise as feedstock for large-scale biodiesel production along with valuable by-products in a biorefinery perspective, after augmenting lipid and biomass production through biochemical and genetic engineering approaches.  相似文献   

13.
Microalgae are a promising alternative source of oil for biodiesel production. Identification of a species with desirable characteristics is a key component towards achieving economic feasibility for the process. This has been compromised by a lack of data allowing effective interspecies comparison. Eleven species of microalgae, selected on the basis of available literature data, were tested for lipid productivity, gravity sedimentation and the suitability of their fatty acid profiles for biodiesel production. The response to nitrogen limitation was species-specific. Lipid yields and productivity were higher at 150?mg?L?1 nitrate than at 1,500?mg?L?1 for all species tested except Spirulina platensis. The Chlorophyta, particularly Chlorella vulgaris and Scenedesmus, had the highest growth rates and showed the greatest increase in lipid content in response to nitrogen limitation. Cylindrotheca fusiformis, S. platensis, Scenedesmus and Tetraselmis suecica had the fastest settling rates and highest biomass recoveries after 24?h of gravity sedimentation. For most species, the fuel would need to be blended or culture conditions to be optimised to achieve the correct lipid profile in order for microalgal fuel to meet the European standards for biodiesel production (EN 14214). The most promising species overall were the freshwater algae Scenedesmus and C. vulgaris and the marine algae C. fusiformis and Nannochloropsis.  相似文献   

14.
The use of microalgae in a number of sectors, including biodiesel, feed and food production, is proving to be of great interest. An evaluation was made of the possible biostimulant effects on Chlorella vulgaris and Scenedesmus quadricauda of humic-like substances (HLs) extracted from agro-industrial wastes. These included digestate from the waste of an agro-livestock farm (D-HL), oil extraction residues from rape (B-HL, Brassica napus L.) and tomato residues (T-HL). The microalgal growth medium (BG11) was supplemented with HLs to evaluate their effect on biomass yield as well as carbohydrate, chlorophylls a and b, lipid and fatty acid contents. Our results showed that the HLs used in the test are effective biostimulants of C. vulgaris and S. quadricauda. The biostimulant effect seems to depend on the type of extract used for cultivating the microalgae, the concentration and the species treated. Among the extracts applied to the growth medium, D-HL and T-HL seem to have a significant effect on microalgal biomass and lipid production. Although B-HL showed no significant effect on the biomass and lipid content of C. vulgaris and S. quadricauda, its presence in the growth medium increased the saturated:unsaturated fatty acid ratio (SFA/UFA) and stimulated the sugar metabolism of the microalgae by increasing their carbohydrate and chlorophyll content.  相似文献   

15.
Municipal wastewater (WW), if not properly remediated, poses a threat to the environment and human health by carrying significant loads of nutrients and pathogens. These contaminants pollute rivers, lakes, and natural reservoirs where they cause eutrophication and pathogen-mediated diseases. However, the high nutrient content of WW makes it an ideal environment for remediation with microalgae that require high nutrient concentrations for growth and are not susceptible to toxins and pathogens. Given that an appropriate algal strain is used for remediation, the incurred biomass can be refined for the production of biofuel. Four microalgal species (Chlamydomonas reinhardtii, Chlorella sp., Parachlorella kessleri-I, and Nannochloropsis gaditana) were screened for efficient phycoremediation of municipal WW and potential use for biodiesel production. Among the four strains tested, P. kessleri-I showed the highest growth rate and biomass production in 100% WW. It efficiently removed all major nutrients with a removal rate of up to 98% for phosphate after 10 days of growth in 100% municipal WW collected from Delhi. The growth of P. kessleri-I in WW resulted in a 50% increase of biomass and a 115% increase of lipid yield in comparison to growth in control media. The Fatty acid methyl ester (FAME), and fuel properties of lipids isolated from cells grown in WW complied with international standards. The present study provides evidence that the green alga P. kessleri-I effectively remediates municipal WW and can be used to produce biodiesel.  相似文献   

16.
A new green microalgal species was isolated, identified and investigated for its biomass production and nutrient removal efficiency in dairy and winery wastewater in this study. The 18S rRNA-based phylogenetic analysis revealed that this new strain is a Diplosphaera sp. and was designated strain MM1. The growth of this strain was evaluated in different diluted dairy and winery wastewaters. The highest algal biomass production (up to 2.3 g L?1) was obtained in dairy wastewater (D3; dairy wastewater 1:2 deionised water) after 14 days of culture. However, for winery wastewater, the highest algal biomass production (up to 1.46 g L?1) was obtained in wastewater combination W2 (winery wastewater 1:1 deionised water) after 14 days of culture. Turbid dairy wastewater with high concentration of nitrogen and phosphorous slowed down the initial growth of the alga. However, at the end of day 14, biomass production was nearly twofold higher than that of winery wastewater. The findings from both types of wastewater suggest that Diplosphaera sp. MM1 has potential for its application in generating biomass with simultaneous remediation of nutrient-rich wastewater.  相似文献   

17.
In synthetic wastewater, growth and phosphorus absorption by two species of microalgae, Chlorella sorokiniana and Chlorella vulgaris, and in domestic wastewater by C. sorokiniana significantly enhanced after a starvation period of 3 days in saline solution, combined with co-immobilization with the microalgae growth-promoting bacterium (MGPB) Azospirillum brasilense Cd in alginate beads. Starvation of 5 days negatively affected the subsequent growth of C. vulgaris, but not of C. sorokiniana in fresh wastewater. Starvation of immobilized cultures of microalgae separately or microalgae with bacteria, followed by returning the immobilized cultures to the same wastewater did not enhance phosphorus absorption. However, a starvation period followed by subsequent submersion of the cultures in fresh wastewater allowed the continuation of phosphorus absorption. The best phosphorus removal treatment from a batch of synthetic or domestic wastewater was with tandem treatments of wastewater treatment with pre-starved, co-immobilized microalgae and replacement of this culture, after one cycle of phosphorus removal, with a new, similarly starved culture. This combination treatment with two cultures was capable of removing up to 72% of phosphorus from the wastewater. There was a direct correlation between the initial load of phosphorus in the domestic wastewater and the efficiency level of removal, being highest at higher phosphorus loads in co-immobilized cultures. This occurred for both immobilized and co-immobilized cultures. Further, the results showed that negative effects of starving the microalgae were mitigated by the application of the MGPB A. brasilense Cd. This is the first report of this capacity in Azospirillum sp. on a single-cell plant. This study showed that starvation periods, combined with co-immobilization with MGPB, have synergistic effects on absorption of phosphorus from wastewater and merits consideration in designing future biological treatments of wastewater.  相似文献   

18.
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (μ) of 0.28 day?1 and biomass productivities of 132 mg ?L?1? day?1. The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g ?L?1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.  相似文献   

19.
Use of secondary-treated wastewater for the production of Muriellopsis sp.   总被引:1,自引:0,他引:1  
In this paper, the use of secondary-treated wastewater as the culture medium for the production of Muriellopsis sp. microalgal biomass is analyzed. Using this wastewater, a maximum biomass productivity of 0.5 g?l?1?day?1 was measured, it being only 38 % lower than that achieved using the standard culture medium. Due to the low nitrogen content of secondary-treated wastewater, cultures produced in a medium containing a high percentage of it become nitrate-limited, thus the quantum yield reduces by up to 0.38 g?E?1—this compares to 0.67 g?E?1 when using a standard culture medium. On the other hand, nitrate limitation enhances the accumulation of lipids and carbohydrates, with values measured at 33 and 66 % dry weight, respectively. It was also demonstrated that secondary-treated wastewater does not have any toxic effect on the growth of Muriellopsis sp. in spite of nitrogen being in the form of ammonium rather than in nitrate. Moreover, the secondary-treated wastewater was depurated when used to produce Muriellopsis sp., with the outlet biological oxygen demand and chemical oxygen demand being lower than at the inlet; the nitrate and phosphate concentrations were zero. Therefore, Muriellopsis sp. production using secondary-treated wastewater allows a reduction in the process cost by decreasing freshwater and fertilizer use, as well as by depurating the water, thus greatly enhancing process sustainability.  相似文献   

20.
There has been renewed interest in the combined use of high-rate algal ponds (HRAP) for wastewater treatment and biofuel production. Successful wastewater treatment requires year-round efficient nutrient removal while high microalgal biomass yields are required to make biofuel production cost-effective. This paper investigates the year-round performance of microalgae in a 5-ha demonstration HRAP system treating primary settled wastewater in Christchurch, New Zealand. Microalgal performance was measured in terms of biomass production, nutrient removal efficiency, light absorption and photosynthetic potential on seasonal timescales. Retention time-corrected microalgal biomass (chlorophyll a) varied seasonally, being lowest in autumn and winter (287 and 364 mg m?3day?1, respectively) and highest in summer (703 mg m?3day?1), while the conversion efficiency of light to biomass was greatest in winter (0.39 mg Chl- a per μmol) and lowest in early summer (0.08 mg Chl- a per μmol). The percentage of ammonium (NH4–N) removed was highest in spring (79 %) and summer (77 %) and lowest in autumn (47 %) and winter (53 %), while the efficiency of NH4–N removal per unit biomass was highest in autumn and summer and lowest in winter and spring. Chlorophyll-specific light absorption per unit biomass decreased as total chlorophyll increased, partially due to the package effect, particularly in summer. The proportional increase in the maximum electron transport rate from winter to summer was significantly lower than the proportional increase in the mean light intensity of the water column. We concluded that microalgal growth and nutrient assimilation was constrained in spring and summer and carbon limitation may be the likely cause.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号