共查询到20条相似文献,搜索用时 0 毫秒
1.
The Short stop (Shot/Kakapo) spectraplakin is a giant cytoskeletal protein, which exists in multiple isoforms with characteristics of both spectrin and plakin superfamilies. Previously characterized Shot isoforms are similar to spectrin and dystrophin, with an actin-binding domain followed by spectrin repeats. We describe a new large exon within the shot locus, which encodes a series of plakin repeats similar to the COOH terminus of plakins such as plectin and BPAG1e. We find that the plakin repeats are inserted between the actin-binding domain and spectrin repeats, generating isoforms as large as 8,846 residues, which could span 400 nm. These novel isoforms localized to adherens junctions of embryonic and follicular epithelia. Loss of Shot within the follicle epithelium leads to double layering and accumulation of actin and ZO-1 in between, and a reduction of Armadillo and Discs lost within, mutant cells, indicative of a disruption of adherens junction integrity. Thus, we identify a new role for spectraplakins in mediating cell-cell adhesion. 相似文献
2.
H J Allen D Sucato B Woynarowska S Gottstine A Sharma R J Bernacki 《Journal of cellular biochemistry》1990,43(1):43-57
Immunohistochemical studies indicated that galaptin is a major protein of ovarian carcinoma cells present in patient effusions and it is distributed throughout the cytoplasm. Enzyme-linked immunoadsorbent assay (ELISA) and immunoprecipitation experiments demonstrated that galaptin is also a major protein of the A121 ovarian carcinoma cell line, constituting less than or equal to 1% of extractable protein bound by DEAE Sephacel. Western blot analyses revealed that the galaptin present in ovarian carcinoma consists of a 14.5 KD subunit. Ovarian carcinoma and mesothelial cells isolated from patient effusions display surface receptors for galaptin with an apparently greater density of receptors present on the carcinoma cells. A121 cells also display surface receptors for galaptin: binding sites/cell = 3 X 10(8) and Ka = 1.2 X 10(9) M-1. The presence of galaptin in bovine corneal endothelial cells (BCEC) and BCEC-derived extracellular matrix (ECM) was demonstrated by ELISA. Of the total ECM-bound galaptin, about 75% appears to be insoluble in phosphate-buffered saline (PBS) lactose. ECM was also found to contain abudnant receptors for galaptin. Treatment of ECM with lactose increased the apparent galaptin receptor density:binding sites/cm2 = 7 X 10(13) and Ka = 2.6 X 10(9) M-1. Pretreatment of A121 cells with galaptin inhibited adhesion to ECM. The addition of exogenous galaptin to ECM had variable effect on cell adhesion. The data presented here suggest that early adhesion events may be carbohydrate-specific involving interaction between ECM-bound galaptin and cell surface galaptin receptors. 相似文献
3.
Regulated expression of nullo is required for the formation of distinct apical and basal adherens junctions in the Drosophila blastoderm
下载免费PDF全文

During cellularization, the Drosophila embryo undergoes a large-scale cytokinetic event that packages thousands of syncytial nuclei into individual cells, resulting in the de novo formation of an epithelial monolayer in the cortex of the embryo. The formation of adherens junctions is one of the many aspects of epithelial polarity that is established during cellularization: at the onset of cellularization, the Drosophila beta-catenin homologue Armadillo (Arm) accumulates at the leading edge of the cleavage furrow, and later to the apicolateral region where the zonula adherens precursors are formed. In this paper, we show that the basal accumulation of Arm colocalizes with DE-cadherin and Dalpha-catenin, and corresponds to a region of tight membrane association, which we refer to as the basal junction. Although the two junctions are similar in components and function, they differ in their response to the novel cellularization protein Nullo. Nullo is present in the basal junction and is required for its formation at the onset of cellularization. In contrast, Nullo is degraded before apical junction formation, and prolonged expression of Nullo blocks the apical clustering of junctional components, leading to morphological defects in the developing embryo. These observations reveal differences in the formation of the apical and basal junctions, and offer insight into the role of Nullo in basal junction formation. 相似文献
4.
5.
Binding site for p120/delta-catenin is not required for Drosophila E-cadherin function in vivo
下载免费PDF全文

Homophilic cell adhesion mediated by classical cadherins is important for many developmental processes. Proteins that interact with the cytoplasmic domain of cadherin, in particular the catenins, are thought to regulate the strength and possibly the dynamics of adhesion. beta-catenin links cadherin to the actin cytoskeleton via alpha-catenin. The role of p120/delta-catenin proteins in regulating cadherin function is less clear. Both beta-catenin and p120/delta-catenin are conserved in Drosophila. Here, we address the importance of cadherin-catenin interactions in vivo, using mutant variants of Drosophila epithelial cadherin (DE-cadherin) that are selectively defective in p120ctn (DE-cadherin-AAA) or beta-catenin-armadillo (DE-cadherin-Delta beta) interactions. We have analyzed the ability of these proteins to substitute for endogenous DE-cadherin activity in multiple cadherin-dependent processes during Drosophila development and oogenesis; epithelial integrity, follicle cell sorting, oocyte positioning, as well as the dynamic adhesion required for border cell migration. As expected, DE-cadherin-Delta beta did not substitute for DE-cadherin in these processes, although it retained some residual activity. Surprisingly, DE-cadherin-AAA was able to substitute for the wild-type protein in all contexts with no detectable perturbations. Thus, interaction with p120/delta-catenin does not appear to be required for DE-cadherin function in vivo. 相似文献
6.
《Cell Adhesion & Migration》2013,7(3):173-232
The adherens junction (AJ) comprises multi-protein complexes required for cell-cell adhesion in embryonic development and adult tissue homeostasis. Mutations in key proteins and mis-regulation of AJ adhesive properties can lead to pathologies such as cancer. In recent years, the zebrafish has become an excellent model organism to integrate cell biology in the context of a multicellular organization. The combination of classical genetic approaches with new tools for live imaging and biophysical approaches has revealed new aspects of AJ biology, particularly during zebrafish gastrulation. These studies have resulted in progress in understanding the relationship between cell-cell adhesion, cell migration and plasma membrane blebbing. 相似文献
7.
The adherens junction (AJ) comprises multi-protein complexes required for cell-cell adhesion in embryonic development and adult tissue homeostasis. Mutations in key proteins and mis-regulation of AJ adhesive properties can lead to pathologies such as cancer. In recent years, the zebrafish has become an excellent model organism to integrate cell biology in the context of a multicellular organization. The combination of classical genetic approaches with new tools for live imaging and biophysical approaches has revealed new aspects of AJ biology, particularly during zebrafish gastrulation. These studies have resulted in progress in understanding the relationship between cell-cell adhesion, cell migration and plasma membrane blebbing. 相似文献
8.
《Cell cycle (Georgetown, Tex.)》2013,12(6):972-986
Previously, we have identified the RUNX1 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from epithelial ovarian cancer (EOC) patients, when compared with primary cultures derived from matched primary (prior to CT) tumors. Here we show that RUNX1 displays a trend of hypomethylation, although not significant, in omental metastases compared with primary EOC tumors. Surprisingly, RUNX1 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. The RUNX1 expression levels were almost identical in primary tumors and omental metastases, suggesting that RUNX1 hypomethylation might have a limited impact on its overexpression in advanced (metastatic) stage of the disease. Knockdown of the RUNX1 expression in EOC cells led to sharp decrease of cell proliferation and induced G1 cell cycle arrest. Moreover, RUNX1 suppression significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as numerous genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX1 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX1 gene in EOC progression and suggest that RUNX1 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX1 and other members of the RUNX gene family in ovarian tumorigenesis. 相似文献
9.
10.
目的观察蛋白激酶PRKX对人肝癌细胞SMMC-7721粘附和迁移能力的影响。方法采用脂质体转染的方法,将PRKX表达质粒转染到SMMC-7721细胞中,蛋白印迹方法鉴定转染前后PRKX蛋白的表达。细胞-基质粘附实验测定对照组和PRKX转染组SMMC-7721细胞的粘附能力。细胞迁移实验测定对照组和PRKX转染组SMMC-7721细胞的迁移能力。结果 SMMC-7721细胞转染组PRKX蛋白的表达增加,SMMC-7721细胞转染组的粘附能力和迁移能力均较对照组增加。结论 PRKX可增加人肝癌细胞SMMC-7721的粘附和迁移能力。 相似文献
11.
Loraine Heyman Johanne Leroy‐Dudal Julien Fernandes Damien Seyer Soizic Dutoit Franck Carreiras 《Cell biology international》2010,34(5):493-502
Ovarian carcinomas, the most fatal gynaecological malignancies, are associated with poor prognosis predominantly because of a high recurrence rate. Ovarian cancer cells spread widely throughout the abdominal cavity leading to peritoneal metastasis. The influence of the mesothelial microenvironment on the biological mechanisms leading to cancer cell colonization of the mesothelium is poorly understood. This study aims to investigate whether mesothelial secretions affect the migration of ovarian cancer cells and focuses on the role of the adhesive molecule Vn (vitronectin) and its integrin receptors. An in vitro co‐culture model indicated that clusters of IGROV1 and SKOV3 cells adhere to MeT‐5A mesothelial cells preferentially at intercellular sites, invade the mesothelial monolayer and alter the integrity of the mesothelium. In addition, mesothelial CM (cell‐conditioned medium) induces migration of IGROV1 and SKOV3 cells in Boyden chambers and wound healing assays. Furthermore, blocking molecules directed against vitronectin or its αv integrin receptor decrease mesothelial‐CM‐induced migration by approximately 40% and 60–70% for IGROV1 and SKOV3 ovarian cancer cells, respectively, in Boyden chamber assays. Wound healing assays that allow cell migration to be measured over 24 h periods demonstrated that blocking molecules prevent the migration of IGROV1 and SKOV3 cells. Vitronectin is present in CM MeT‐5A (mesothelial conditioned medium) and in metastatic peritoneal tissue sections. The expression of vitronectin at the periphery of mesothelial cells and within ovarian cancer cell clusters suggests a potential role for this molecule during intraperitoneal implantation of ovarian cancer cells. Vitronectin could represent a target for the development of anti‐adhesive strategies to impede ovarian cancer dissemination. 相似文献
12.
P Zhang P Zhang B Shi M Zhou H Jiang H Zhang X Pan H Gao H Sun Z Li 《Cell death & disease》2014,5(1):e991
This study was performed to investigate the role of galectin-1 (Gal-1) in epithelial ovarian cancer (EOC) progression and chemoresistance. Tissue samples from patients with EOC were used to examine the correlation between Gal-1 expression and clinical stage of EOC. The role of Gal-1 in EOC progression and chemoresistance was evaluated in vitro by siRNA-mediated knockdown of Gal-1 or lentivirus-mediated overexpression of Gal-1 in EOC cell lines. To elucidate the molecular mechanisms underlying Gal-1-mediated tumor progression and chemoresistance, the expression and activities of some signaling molecules associated with Gal-1 were analyzed. We found overexpression of Gal-1 in advanced stages of EOC. Knockdown of endogenous Gal-1 in EOC cells resulted in the reduction in cell growth, migration, and invasion in vitro, which may be caused by Gal-1''s interaction with H-Ras and activation of the Raf/extracellular signal-regulated kinase (ERK) pathway. Additionally, matrix metalloproteinase-9 (MMP-9) and c-Jun were downregulated in Gal-1-knockdown cells. Notably, Gal-1 overexpression could significantly decrease the sensitivities of EOC cells to cisplatin, which might be ascribed to Gal-1-induced activation of the H-Ras/Raf/ERK pathway and upregulation of p21 and Bcl-2. Taken together, the results suggest that Gal-1 contributes to both tumorigenesis and cisplatin resistance in EOC. Thus, Gal-1 is a potential therapeutic target for EOC. 相似文献
13.
《Cell communication & adhesion》2013,20(5):419-440
Perturbation of adhesion mediated by cadherins was achieved by over-expressing truncated forms of E- and EP-cadherins (in which the extracellular domain was deleted) in different blastomeres of stage 6 Xenopus laevis embryos. Injections of mRNA encoding truncated E- and EP-cadherins into A1A2 blastomeres resulted in inhibition of cell adhesion and, at later stages, in morphogenetic defects in the anterior neural tissues to which they mainly contribute. In addition, truncated EP-cadherin mRNA produced a duplication of the dorso-posterior axis in a significant number of cases. The expression of truncated E- and EP-cadherins in blastomeres involved in gastrulation and neural induction (B1B2 and C1), led to the duplication of the dorso-posterior axis as well as to defects in anterior structures. Morphogenetic defects obtained with truncated EP-cadherin were more severe than those induced with truncated E-cadherin. Cells derived from blastomeres injected with truncated EP-cadherin mRNA, dispersed more readily at the blastula and gastrula stages than the cells derived from the blastomeres expressing truncated E-cadherin. Presumptive mesodermal cells expressing truncated cadherins did not engage in coherent directional migration. The alteration of cadherin-mediated cell adhesion led directly to the perturbation of the convergent-extension movements during gastrulation as shown in the animal cap assays and indirectly to perturbation of neural induction. Although the cytoplasmic domains of type I cadherins share a high degree of sequence identity, the over-expression of their cytoplasmic domains induces a distinct pattern of perturbations, strongly suggesting that in vivo, each cadherin may transduce a specific adhesive signal. These graded perturbations may in part result from the relative ability of each cadherin cytoplasmic domain to titer the P-catenin. 相似文献
14.
Zehra Tavsan 《Cell Adhesion & Migration》2020,14(1):57-68
ABSTRACTAlterations of cell adhesion are involved in cancer progression, but the mechanisms underlying the progression and cell adhesion have remained poorly understood. Focusing on the complex between EpCAM, claudins and tetraspanins, we described a sequence of events by which of the molecules associate each other in ovarian cancer. The interactions between molecules were evaluated by immunoprecipitations and then immunoblotting. To identify the effects of complex formation on the ovarian cancer progression, the different types of ovarian cancer cell lines were compared. In this study, we report the identification of the EpCAM-claudin-4 or ?7-CD82 complex in the ovarian cancer progression and metastasis in vitro. Additionally, we demonstrated palmitoylation and intra- or extra-cellular regions are critically required for the complex formation. These results represent the first direct evidence for the link between the dynamism of cell adhesion molecules and ovarian cancer progression. 相似文献
15.
Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling 总被引:1,自引:0,他引:1
The epithelial cadherin (E-cadherin)-catenin complex binds to cytoskeletal components and regulatory and signaling molecules to form a mature adherens junction (AJ). This dynamic structure physically connects neighboring epithelial cells, couples intercellular adhesive contacts to the cytoskeleton, and helps define each cell's apical-basal axis. Together these activities coordinate the form, polarity, and function of all cells in an epithelium. Several molecules regulate AJ formation and integrity, including Rho family GTPases and Par polarity proteins. However, only recently, with the development of live-cell imaging, has the extent to which E-cadherin is actively turned over at junctions begun to be appreciated. This turnover contributes to junction formation and to the maintenance of epithelial integrity during tissue homeostasis and remodeling. 相似文献
16.
17.
Honda T Shimizu K Fukuhara A Irie K Takai Y 《Biochemical and biophysical research communications》2003,306(1):104-109
Cadherins are key Ca(2+)-dependent cell-cell adhesion molecules at adherens junctions (AJs) in fibroblasts and epithelial cells, whereas claudins are key Ca(2+)-independent cell-cell adhesion molecules at tight junctions (TJs) in epithelial cells. The formation and maintenance of TJs are dependent on the formation and maintenance of AJs. Nectins are Ca(2+)-independent immunoglobulin-like cell-cell adhesion molecules which comprise a family of four members, nectin-1, -2, -3, and -4, and are involved in the formation of AJs in cooperation with cadherins, and the subsequent formation of TJs. We show here that the velocity of the formation of the E-cadherin-based AJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in L cells stably expressing E-cadherin and Madin-Darby canine kidney cells. Moreover, the velocity of the formation of the claudin-based TJs is increased by overexpression of nectin-1 and is reduced by addition of the nectin-1 inhibitors to the medium in Madin-Darby canine kidney cells. These results indicate that nectins regulate the velocity of the formation of the E-cadherin-based AJs and the subsequent formation of the claudin-based TJs. 相似文献
18.
Revisiting the function of PSA-NCAM in the nervous system 总被引:7,自引:0,他引:7
19.
《Journal of receptor and signal transduction research》2013,33(2):120-127
Context: Integrin-linked kinase (ILK), a multidomain focal adhesion protein serine/threonine kinase, plays an essential role in ovarian carcinoma. There are reports that the expression and activity of ILK are increased in ovarian cancer.Objective: To test the hypothesis that ILK pathway mediates the apoptosis of ovarian carcinoma SKOV3 cell influencing the cell survival, we performed these studies.Materials and methods: We applied lentivirus transfection, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT), apoptotic proteins expressions assay, and Hoechst to study our hypothesis.Results: We found that silencing of the ILK increases the cell cytotoxic, growth inhibition, and apoptosis. Moreover, after blocking the activation of ILK with ILK shRNA, up-regulation of pro-apoptotic bax expression and down-regulation of the anti-apoptotic bcl-2 expression were found in ovarian cancer SKOV3 cell line. These were associated with an increasing cleaved caspase-3 activity and chromatin condensation of cell nuclear. Furthermore, the expressions of fas and fas ligand (fasL), belonging to the tumor necrosis factor family and controlling the cell apoptosis, were also enhanced.Conclusions: Thus, these findings indicate that both the intrinsic pathway and the extrinsic death receptor pathway are involved in the process that silencing of the ILK gene induces the apoptosis in ovarian carcinoma SKOV3 cell. 相似文献
20.
D E Woolley L C Tetlow D J Adlam D Gearey R D Eden T H Ward T D Allen 《Experimental cell research》2002,273(1):65-72
A novel electrochemical technique which detects and monitors real-time changes in cell behavior in vitro has been used to examine the effects of recognized anticancer drugs on the human ovarian carcinoma cell line A2780 and its adriamycin (A2780adr)- and cisplatin (A2780cispt)-resistant variants. These cells, adherent to gold electrodes or sensors, modify the extracellular microenvironment at the cell:sensor interface, producing an electrochemical potential that is different from that of the bulk culture medium. Confluent, adherent A2780 cells produced an electrochemical signal, measured as an open circuit potential (OCP), of approximately -100 mV compared to a cell-free value of approximately -15 mV. Exposure of A2780 cells to cisplatin (range 10(-4) to 10(-6) M), adriamycin (range 10(-5) to 10(-7) M), and vinblastine (10(-6) M) all produced positive shifts in the OCP signal relative to untreated control cells during 24 h of culture, but Taxotere (range 10(-5) to 10(-7) M) had no effect. These positive shifts in OCP signal were evident well before observations of reduced cellular adhesion and viability after 24 h, as judged in parallel cultures with a plastic substratum and by scanning electron microscopy. By contrast, the same treatments applied to the A2780adr and A2780cispt variants showed that each demonstrated different sensitivities to the same drugs applied to the parental A2780 cells. The effects of the same four anticancer drugs on ovarian carcinoma (A2780) and breast carcinoma (8701-BC) cell lines showed that the former was far more responsive to adriamycin and cisplatin. Such differences in drug sensitivities between the two cell lines were subsequently confirmed using the conventional MTT assay over 5 days. Although this electrochemical technology readily detects changes in cell adhesion and viability, the modified OCP signals recorded within a few hours of anticancer drug treatments are evident well before microscopic morphological changes become apparent. It is proposed that these early changes in OCP signals, relative to control untreated cells, reflect modifications of physiological/behavioral processes manifested at the cell surface. 相似文献