首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Aspergillus oryzae is commonly used in solid-state fermentation (SSF) and forms abundant aerial mycelia. Previously, we have shown that aerial mycelia are extremely important for the respiration of this fungus during growth on a wheat-flour model substrate. In this paper, we show that aerial mycelia of this fungus give a strong increase in fungal biomass and α-amylase production. Cultures of A. oryzae on wheat-flour model substrate produced twice the amounts of fungal biomass and α-amylase, when aerial mycelia were formed. Utilization of these findings in commercial solid-state fermenters requires further research; results from packed beds of grain indicate that aerial mycelia are of limited importance there. Probably, substrate pre-treatment and an increase in bed voidage are required.  相似文献   

2.
Summary A simulation model is used to quantify relationships between diet quality, digestive processes and body weight in ungulate herbivores. Retention time of food in the digestive tract is shown by regression to scale with W0.27, and to be longer in ruminants than in hindgut fermenters. Allometric relationships between whole gut mean retention time (MRT, h) and weight (W) were: MRT=9.4 W0.255 (r 2=0.80) for hindgut fermenters and MRT=15.3 W0.251 (r 2=0.76) in ruminants. Longer retention of ingesta by large-bodied ruminants and hindgut fermenters increases digestive efficiency relative to small animals and permits them to survive on lower-quality foods. Compared with ruminants, hindgut fermenters' faster throughput is an advantage which outweighs their lower digestive efficiency, particularly on poor quality foods, provided that food resources are not limiting. This suggests that the predominance of ruminants in the middle range of body weights results from their more efficient use of scarce resources under conditions of resource depletion. Considering only physical limitations on intake, the model shows that the allometric coefficient which scales energy intake to body mass is 0.88 in ruminants and 0.82 in hindgut fermenters. The advantages of large body size are countered by disadvantages where food quantity is limited, and we suggest that the upper limit to ungulate body size is determined by the ability to extract nutrients from feeding niches during the nadir of the seasonal cycle of resource quality and abundance.  相似文献   

3.
The time delay of oxygen probe response to the signal from a fermenter makes identification of the volumetric oxygen transfer coefficient kLa by the dynamic method more complicated. A coupled model involving the transient-state oxygen balance of the fermenter together with the dynamic model of the oxygen probe must be then formulated, solved and identified. In this paper two simple models of air-lift loop fermenters have been proposed and a coupled mathematical model of the fermenter – oxygen probe system has been developed. The identification procedure was used to estimate kLa values in the fermenter with internal circulation flow on the basis of experimental measurements. A comparison of evaluated and experimental indications of the probes placed at various heights of the column proves that the model presented gives a possibility of the first-step approximation of kLa in loop fermenters.  相似文献   

4.
Summary Solid-state fermentations of alkali-treated maple wood shavings were carried out at 30°C in three types of static tray fermenters using Polyporus anceps. Comparison of the fermentation products after 40 days showed a recirculating tower bioreactor (RTB) to be more effective for the production of protein and the consumption of substrate than either a shallow or deep static tray fermentation vessel. Use of the RTB resulted in 70% substrate utilization and a residue containing 17% crude protein.  相似文献   

5.
The criterion for the oxygen limitation of substrate uptake in microbial film fermenters is expressed in terms of diffusion coefficients, utilization coefficients, and the free solution concentrations of substrate and oxygen. It is proposed that the ideal film thickness in such fermenters is equal to the penetration depth of the limiting substrate. The ideal film thickness is calculated, in terms of the parameters contained in the criterion for oxygen limitation, for three separate kinetic rate expressions. It is found that for the air–glucose–microbe system a simplified kinetic rate expression can be used and the region of dependence on two substrates is shown to be very limited. This is not true for other systems. Maximum uptake rates are calculated for a range of concentrations. Finally, it is shown that the procedure used can be generalized to determine the limiting substrate in a multisubstrate system and to calculate ideal film thickness and uptake rates for any pair of substrates where the kinetics of substrate uptake are known for the individual microorganism.  相似文献   

6.
Summary The operation of packed bed fermenters for ethanol production using the EX-FERM technique with two cycles of 24 h each is described. Twelve Saccharomyces strains were tested with sugarcane particles which had been previously dried and stored as the substrate. All the strains showed acceptable sugar consumption, in some cases above 97%, and ethanol yield coefficients. Sugar consumption values differed, significantly among yeast strains for both cycles. Specific initial rates of ethanol production for the strains ranged from 0.75 to 0.82 g/g· h. Sugar extraction from the particles influenced the first 4 h period of each cycle; final sugar extraction was about 96%. The initial yeast biomass figures were low, within 2–4 g/l, and the final distribution of yeast between solids and circulating liquid varied according to the yeast strain employed. Hydrolysis of sucrose into its components was demonstrated for selected yeast strains during the EX-FERM concurrent extraction and fermentation. The results of the present study support the validity of the operation of packed bed fermenters in cycles for the EX-FERM technique, and suggest employment of smaller cane particles.  相似文献   

7.
Scale-up from shake flasks to fermenters has been hampered by the lack of knowledge concerning the influence of operating conditions on mass transfer, hydromechanics, and power input. However, in recent years the properties of shake flasks have been described with empirical models. A practical scale-up strategy for everyday use is introduced for the scale-up of aerobic cultures from shake flasks to fermenters in batch and continuous mode. The strategy is based on empirical correlations of the volumetric mass transfer coefficient (k(L) a) and the pH. The accuracy of the empirical k(L) a correlations and the assumptions required to use these correlations for an arbitrary biological medium are discussed. To determine the optimal pH of the culture medium a simple laboratory method based on titration curves of the medium and a mechanistic pH model, which is solely based on the medium composition, is applied. The effectiveness of the scale-up strategy is demonstrated by comparing the behavior of Corynebacterium glutamicum on lactic acid in shake flasks and fermenters in batch and continuous mode. The maximum growth rate (micro(max) = 0.32 h(-1)) and the oxygen substrate coefficient (Y O2 /S= 0.0174 mol/l) of C. glutamicum on lactic acid were equal for shake flask, fermenter, batch, and continuous cultures. The biomass substrate yield was independent of the scale, but was lower in batch cultures (Y(X/S) = 0.36 g/g) than in continuous cultures (Y(X/S) = 0.45 g/g). The experimental data (biomass, respiration, pH) could be described with a simple biological model combined with a mechanistic pH model.  相似文献   

8.
The growth behaviour of a Nigella damascena cell line cultivated in airlift fermenters in darkness as well as in ligth was investigated. Considerable variations were observed with regard to the morphology of the cells, the consumption of substrate and the content of yellow pigments. The UV absorption spectra of the yellow pigments show some similarities to the spectra known for thymoquinone.  相似文献   

9.
Controlled substrate addition was used to maintain mixed microbial cultures in fermenters at either pH 7.0 or 70% dissolved oxygen saturation. Control of pH permitted a greater volume of substrate to be processed. Ammonium nitrogen concentrations were similar for both fermenters but concentrations of oxidized nitrogen varied. Nitrification/denitrification sequences appeared to be initiated by unscheduled changes in dissolved oxygen concentration. It was possible to maintain a steady state with respect to a controlled parameter and end-product quality but other parameters fluctuated.  相似文献   

10.
In growth-factor limited fermentations carried out in continuous high-flow rate fermenters the relationship existing between the specific ethanol formation rate and the ethanol concentration was found to change its characteristics from a linear function into a nonlinear one at high biomass concentrations. The deviation from the linear inhibitory behaviour of the cells was the greater the more the biomass concentration increased. A very good correspondence between the experimentally found productivities of ethanol formation and its adequate values obtained by calculation could be attained by using an improved steady-state productivity model, in which the variability of the function v = f(P) had been considered.  相似文献   

11.
The alimentary canal of the earthworm is representative of primitive gut ecosystems, and gut fermenters capable of degrading ingested biomass-derived polysaccharides might contribute to the environmental impact and survival of this terrestrial invertebrate. Thus, this study evaluated the postulation that gut microbiota of the model earthworm Lumbricus terrestris ferment diverse biomass-derived polysaccharides. Structural polysaccharides (e.g. cellulose, chitin) had marginal impact on fermentation in anoxic gut content treatments. In contrast, nonstructural polysaccharides (e.g. starch, glycogen) greatly stimulated (a) the formation of diverse fermentation products (e.g. H2, ethanol, fatty acids) and (b) the facultatively fermentative families Aeromonadaceae and Enterobacteriaceae. Despite these contrasting results with different polysaccharides, most saccharides derived from these biopolymers (e.g. glucose, N-acetylglucosamine) greatly stimulated fermentation, yielding 16S rRNA gene-based signatures of Aeromonadaceae-, Enterobacteriaceae- and Fusobacteriaceae-affiliated phylotypes. Roots and litter are dietary substrates of the earthworm, and as proof-of-principle, gut-associated fermenters responded rapidly to root- and litter-derived nutrients including saccharides. These findings suggest that (a) hydrolysis of certain ingested structural polysaccharides may be a limiting factor in the ability of gut fermenters to utilize them and (b) nonstructural polysaccharides of disrupted biomass are subject to rapid fermentation by gut microbes and yield fatty acids that can be utilized by the earthworm.  相似文献   

12.
We demonstrate that the coulombic efficiency (CE) of a microbial electrolytic cell (MEC) fueled with a fermentable substrate, ethanol, depended on the interactions among anode respiring bacteria (ARB) and other groups of micro‐organisms, particularly fermenters and methanogens. When we allowed methanogenesis, we obtained a CE of 60%, and 26% of the electrons were lost as methane. The only methanogenic genus detected by quantitative real‐time PCR was the hydrogenotrophic genus, Methanobacteriales, which presumably consumed all the hydrogen produced during ethanol fermentation (~30% of total electrons). We did not detect acetoclastic methanogenic genera, indicating that acetate‐oxidizing ARB out‐competed acetoclastic methanogens. Current production and methane formation increased in parallel, suggesting a syntrophic interaction between methanogens and acetate‐consuming ARB. When we inhibited methanogenesis with 50 mM 2‐bromoethane sulfonic acid (BES), the CE increased to 84%, and methane was not produced. With no methanogenesis, the electrons from hydrogen were converted to electrical current, either directly by the ARB or channeled to acetate through homo‐acetogenesis. This illustrates the key role of competition among the various H2 scavengers and that, when the hydrogen‐consuming methanogens were present, they out‐competed the other groups. These findings also demonstrate the importance of a three‐way syntrophic relationship among fermenters, acetate‐consuming ARB, and a H2 consumer during the utilization of a fermentable substrate. To obtain high coulombic efficiencies with fermentable substrates in a mixed population, methanogens must be suppressed to promote new interactions at the anode that ultimately channel the electrons from hydrogen to current. Biotechnol. Bioeng. 2009;103: 513–523. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
An optimal substrate feeding for an industrial scale fed-batch fermenter is determined through iterative dynamic programming in order to maximize the cell-mass production and to minimize the ethanol formation. An experimentally validated rigorous dynamic model comprises constraints in the optimization problem. A new objective function is proposed to accommodate the competing requirements of maximum yeast production and minimum ethanol formation. The objective function is maximized with iterative dynamic programming with respect to the sugar feed rate. Results prove the effectiveness of dynamic programming for solving such high-dimensional and nonlinear optimization problems, and the resulting optimal policy indicates that considerable increase in yeast production in fed-batch fermenters can be achieved while minimizing the undesired by-product, ethanol.  相似文献   

14.
Summary An investigation of the performance of air-lift fermenters showed that the value of the oxygen mass transfer coefficient (KLa) increased with both the aeration rate and vessel size. Although some change in the liquid circulation pattern occurred with increasing superficial gas velocity, there was no transition from bubbly to slug flow over the range of superficial gas velocities studied. Increases in broth viscosity caused an increase in gas hold up and a reduction in the values for KLa, although this reduction was not as great as that observed in mechanically agitated fermenters. Under conditions of aeration and agitation which gave comparable KLa values similar biomass yields of Aspergillus oryzae were obtained in 7.25 l and 100 l air-lift fermenters, and in a 3.5 l mechanically agitated fermenter.  相似文献   

15.
An extended dynamical model for growth and sporulation of Bacillus thuringiensis subsp. kurstaki in an intermittent fed-batch culture with total cell retention is proposed. This model differs from reported models, by including dynamics for natural death of cells and substrate consumption for cell maintenance. The proposed model uses sigmoid functions to describe these kinetic parameters. Equations for time evolution of substrate, vegetative, sporulated and total cell concentration were taken from previous works. Model parameters were determined from batch experimental data obtained in pilot plant. Parameter identification was developed in two stages: (1) coarse identification using a multivariable optimization with constraints algorithm, (2) fine identification by heuristic fit of model parameters looking for a minimal model error. The proposed model estimates adequate time evolution of the process variables with a mean error of 2.6% on substrate concentration and 6.7% on biomass concentration.  相似文献   

16.
The effect of a combination of inulin (INU) and polyphenol-containing adzuki bean extract (AE) on intestinal fermentation was examined in vitro using fermenters for 48 h and in vivo using rats for 28 d. The total short-chain fatty acid concentrations in the fermenters were decreased by a combination of INU and AE, but the concentration in the INU + AE group was higher than the cellulose (CEL) and CEL + AE groups. The cecal propionate concentration was increased by a combination of INU and AE compared with their single supplement. The ammonia-nitrogen concentration in the fermenters and rat cecum was decreased by INU and AE. Cecal mucin levels were increased by INU and AE respectively. Therefore, our observations suggested that the combination of INU and AE might be a material of functional food that includes several healthy effects through intestinal fermentation.  相似文献   

17.
The efficiency of L-lysine biosynthesis is essentially determined by the power input and aeration ratio in the stirred fermenter. A mass transfer model was developed by means of the results of lysine fermentations in four geometrically similar fermenters with working volumes of 10 1, 50 1, 100 1 and 2500 1 which allows the optimization of lysine fermentation from the energetical point of view. The usefullness of this kLa-model is demonstrated with an example where the power input for an unknown fermenter is calculated.  相似文献   

18.
Goodman, R. E. (University of California, Los Angeles), and M. J. Pickett. Delayed lactose fermentation by Enterobacteriaceae. J. Bacteriol. 92:318-327. 1966.-When 171 Citrobacter freundii strains and 14 Paracolobactrum arizonae strains examined, 51 of the C. freundii strains and 13 of the P. arizonae strains were found to be delayed or negative lactose fermenters. Of the slow fermenters, 65% yielded rapidly fermenting mutants in cultures undergoing delayed fermentation. Lactose fermentation could generally be hastened by increasing lactose concentrations. Many organisms which fermented lactose slowly grew readily on a medium containing lactose as the sole carbon source. Regardless of their ability to ferment lactose, all strains of C. freundii and P. arizonae investigated could be shown to possess beta-galactosidase. Delayed fermenters failed to take up lactose from the culture medium, whereas prompt fermenters did so readily. The beta-galactosidases of 12 strains of enteric bacteria were studied in crude cell extracts with respect to specific activity, stability, and activity at varying substrate (o-nitrophenyl-beta-d-galactopyranoside) concentrations, at varying pH, and in the presence of sodium, potassium, and magnesium. The widely varying specific activities and the approximate similarity of the Michaelis constants (about 2 x 10(-4)m) suggested that the strains investigated produced differing amounts of beta-galactosidase. Moreover, qualitative differences in the enzymes provided evidence that these strains synthesized different molecular forms of beta-galactosidase. The results suggested that organisms which ferment lactose only after a prolonged delay do so because they possess multiple defects in their lactose-metabolizing machinery.  相似文献   

19.
Summary Ruminants are unevenly distributed across the range of body sizes observed in herbivorous mammals; among extant East African species they predominate, in numbers and species richness, in the medium body sizes (10–600 kg). The small and the large species are all hind-gut fermenters. Some medium-sized hind-gut fermenters, equid perissodactyls, coexist with the grazing ruminants, principally bovid artiodactyls, in grassland ecosystems. These patterns have been explained by two complementary models based on differences between the digestive physiology of ruminants and hind-gut fermenters. The Demment and Van Soest (1985) model accounts for the absence of ruminants among the small and large species, while the Bell/Janis/Foose model accounts both for the predominance of ruminants, and their co-existence with equids among the medium-sized species (Bell 1971; Janis 1976; Foose 1982). The latter model assumes that the rumen is competitively superior to the hind-gut system on medium quality forages, and that hind-gut fermenters persist because of their ability to eat more, and thus to extract more nutrients per day from high fibre, low quality forages. Data presented here demonstrate that compared to similarly sized grazing ruminants (bovids), hind-gut fermenters (equids) have higher rates of food intake which more than compensate for their lesser ability to digest plant material. As a consequence equids extract more nutrients per day than bovids not only from low quality foods, but from the whole range of forages eaten by animals of this size. Neither of the current nutritional models, nor refinements of them satisfactorily explain the preponderance of the bovids among medium-sized ungulates; alternative hypotheses are presented.  相似文献   

20.
Aspergillus fumigatus andA. oryzae were cultivated in laboratory fermenters on media containing xylan as the main carbon source.A. fumigatus produced xylanase on unsubstituted, insoluble beech xylan but growth and enzyme production on soluble xylo-oligosaccharides from the steaming of hardwood were poor due to the presence of inhibitors. An essential prerequisite for good xylanase production byA. fumigatus was decrease in the pH of the cultivation below 3.0 At higher pH values, the production of proteolytic enzymes caused degradation of the xylanase activity already produced.A. oryzae produced rather less xylanase activity thanA. fumigatus on the beech xylan medium but, after adaptation, was capable of efficient enzyme production on the steamed substrate.M.J. Bailey and L. Viikari are with the VTT, Biotechnical Laboratory, PO Box 202, SF-02151 Espoo, Finland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号