首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A monoclonal antibody directed against the type 2 adenovirus (Ad2) penton base protein was cloned and expressed in Spodoptera frugiperda (Sf9) cells using a nonlytic vector system. The coding sequences for the immunoglobulin light and heavy chains were placed under the control of the Orgyia pseudotsugata multicapsid nucleopolyhedrosis virus immediate-early 2 (OpIE2) promoter. Transfected Sf9 cells continuously secreted the antibody which retained the ability to recognize both native and recombinant Ad2 penton base proteins. Bifunctional penton base antibodies were also generated by fusing a gene for a growth factor or a cytokine at the 3' end of the Ig constant heavy chain domain. The quantity and activity of recombinant antibodies generated in the nonlytic insect cell system could be determined relatively quickly compared to other expression systems. Moreover, these recombinant proteins were not subjected to proteolytic degradation as frequently occurs during baculovirus-mediated cell lysis and the levels of recombinant antibodies produced in the nonlytic system were comparable to those reported for cytolytic baculovirus vectors.  相似文献   

2.
3.
The goal of this research was to evaluate the roles of calpains and their interactions with the proteasome and the lysosome in degradation of individual sarcomeric and cytoskeletal proteins in cultured muscle cells. Rat L8-CID muscle cells, in which we expressed a transgene calpain inhibitor (CID), were used in the study. L8-CID cells were grown as myotubes after which the relative roles of calpain, proteasome and lysosome in total protein degradation were assessed during a period of serum withdrawal. Following this, the roles of proteases in degrading cytoskeletal proteins (desmin, dystrophin and filamin) and of sarcomeric proteins (alpha-actinin and tropomyosin) were assessed. Total protein degradation was assessed by release of radioactive tyrosine from pre-labeled myotubes in the presence and absence of protease inhibitors. Effects of protease inhibitors on concentrations of individual sarcomeric and cytoskeletal proteins were assessed by Western blotting. Inhibition of calpains, proteasome and lysosome caused 20, 62 and 40% reductions in total protein degradation (P<0.05), respectively. Therefore, these three systems account for the bulk of degradation in cultured muscle cells. Two cytoskeletal proteins were highly-sensitive to inhibition of their degradation. Specifically, desmin and dystrophin concentrations increased markedly when calpain, proteasome and lysosome activities were inhibited. Conversely, sarcomeric proteins (alpha-actinin and tropomyosin) and filamin were relatively insensitive to the addition of protease inhibitors to culture media. These data demonstrate that proteolytic systems work in tandem to degrade cytoskeletal and sarcomeric protein complexes and that the cytoskeleton is more sensitive to inhibition of degradation than the sarcomere. Mechanisms, which bring about changes in the activities of the proteases, which mediate muscle protein degradation are not known and represent the next frontier of understanding needed in muscle wasting diseases and in muscle growth biology.  相似文献   

4.
The DNA polymerase (POL) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for viral DNA replication and, thus, may be considered as a viable target for anti-KSHV therapeutics. To produce large quantities of homogeneous and pure POL required for high-throughput screening (HTS) for inhibitors, we generated a recombinant baculovirus vector encoding a hexahistidine (His6)-tagged POL and infected Spodoptera frugiperda Sf-9 insect cells. High expression of recombinant POL (rPOL) was achieved for up to 72h post-infection. The rPOL was solubilized in lysis buffer containing 0.3% Cymal-5 detergent, purified by metal-chelating and dsDNA-cellulose affinity chromatography, and analyzed by anti-His antibody Western blot and mass spectrometry. The functionality of rPOL was confirmed by its DNA synthesis activity in vitro, which was effectively blocked by the anti-herpetic DNA polymerase inhibitors, foscarnet and cidofovir diphosphate, in a dose-dependent manner. The POL expressed and purified from the recombinant baculovirus-infected insect cells may be useful toward the development of HTS of large chemical libraries to identify novel KSHV DNA polymerase inhibitors.  相似文献   

5.
Cellular protein homeostasis results from the combination of protein biogenesis processes and protein quality control mechanisms, which contribute to the functional state of cells under normal and stress conditions. Proteolysis constitutes the final step by which short-lived, misfolded and damaged intracellular proteins are eliminated. Protein turnover and oxidatively modified protein degradation are mainly achieved by the proteasome in the cytosol and nucleus of eukaryotic cells while several ATP-dependent proteases including the matrix protease Lon take part in the mitochondrial protein degradation. Moreover, Lon protease seems to play a major role in the elimination of oxidatively modified proteins in the mitochondrial matrix. Specific inhibitors are commonly used to assess cellular functions of proteolytic systems as well as to identify their protein substrates. Here, we present and discuss known proteasome and Lon protease inhibitors. To date, very few inhibitors of Lon have been described and no specific inhibitors of this protease are available. The current knowledge on both catalytic mechanisms and inhibitors of these two proteases is first described and attempts to define specific non-peptidic inhibitors of the human Lon protease are presented.  相似文献   

6.
Structural proteins of the poultry pathogen, infectious bursal disease virus (IBDV), were expressed in the baculovirus/insect cell expression system. To date, several reports have indicated that animal virus structural proteins are expressed only at low yield in this system. In this article, several factors were examined to enhance yield. These include medium, dissolved oxygen level, and the addition (in vivo and in vitro) of protease inhibitors. Specifically, two media were compared, and SF-900 II was superior to Ex-Cell 401 for cell growth and IBDV protein expression. A cocktail of protease inhibitors including phenylmethyl sulfonyl fluoride (PMSF), leupeptin, and ethylenediamine tetraacetic acid (EDTA) minimized proteolysis in vitro. Also, aprotinin and pepstatin A deterred product degradation in vivo and increased the product yield nearly 2-fold. Finally, in 3 L bioreactors, a dissolved oxygen tension of 50% DO (air saturation) was optimal. Results demonstrated that several relatively simple adjustments to the baculovirus system significantly improved the yield of IBD virus structural proteins.  相似文献   

7.
Three insect cell lines, SL-7B cells derived from Spodoptera litura, Sf9, and High Five (Hi-5) cells, were used for the production of pro-hepatocyte growth factor (pro-HGF). Cells were cultured and then infected with a recombinant HGF-containing baculovirus in a serum-free medium. In SL-7B cells, pro-HGF is synthesized and excreted from the cells and late in infection is converted to a heterodimeric form of HGF even when the cells are grown in serum free medium. Conversion of a single-chain form of HGF (pro-HGF) into an HGF heterodimer was unexpected, as pro-HGF is normally cleaved by a serum protease called HGF activator. The proliferation activity of heparin-affinity-purified HGF from serum-free culture supernatant of SL-7B cells is comparable to that obtained from HGF converted by serum proteases, suggesting that SL-7B cells produce a functionally analogous protease to correctly process pro-HGF. This work reports, for the first time, on the feasibility of properly processing pro-HGF to form functional HGF by proteases from invertebrate cells in serum-free media. Avoiding the supplementation of sera provides the advantages of a low production cost, zero contamination of infectious agents from sera, and simple downstream product purification. Experimental results further demonstrate that the conversion of pro-HGF by insect cells is cell-line-dependent, because proteases in Hi-5 or Sf9 cells could not process pro-HGF as efficiently and properly as those in SL-7B cells.  相似文献   

8.
Culture medium obtained from baculovirus-infected High Five insect cells contains an endoglycosidase activity capable of releasing chondroitin sulfate chains from aggrecan, decorin and biglycan. Release appears to occur by cleavage within the linkage region of the chondroitin sulfate chain, but not all chains are amenable to release. Culture medium from Sf9 insect cells does not contain this activity. The endoglycosidase may become a useful reagent for biochemical research for releasing intact chondroitin sulfate chains from proteoglycans. It may also represent an impediment to such research when baculovirus systems are used to generate recombinant proteoglycans.  相似文献   

9.
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017  相似文献   

10.
The interaction between the synaptic adhesion molecules neuroligins and neurexins is essential for connecting the pre- and post-synaptic neurons, modulating neuronal signal transmission, and facilitating neuronal axogenesis. Here, we describe the simultaneous expression of the extracellular domain of rat neuroligin-1 (NL1) proteins along with the enhanced green fluorescent protein (EGFP) using the bi-cistronic baculovirus expression vector system (bi-BEVS). Recombinant rat NL1 protein, fused with signal sequence derived from human Azurocidin gene (AzSP), was secreted into the culture medium and the optimum harvest time for NL1 protein before the lysis of infected cells was determined through the release of cytosolic EGFP. The NL1 protein (0.129±0.013 mg/8×10(7) High Five cells; ~96% purity by metal affinity chromatography) was obtained from the supernatant of the recombinant virus-infected insect cells. A novel chip was employed to address whether the recombinant NL1 is functional in axogenesis. The purified rat NL1 promoted and enhanced the growth rate (137.07±9.74 μm/day) of the axon on NL1/PLL (poly-L-lysine)-coated fine lines on the chip compared to those lines that were coated with PLL alone (105.53±4.53 μm/day). These results were confirmed by fluorescence immunocytochemistry and demonstrated that the recombinant protein can be purified by a one-step process using IMAC combined with monitoring of cell lysis by bi-BEVS. This technique along with our novel chip offers a simple, cost-effective and useful platform for understanding the roles of NL1 protein in neuronal regeneration and synaptic formation studies.  相似文献   

11.
Proteases produced during the culture of Spodoptera frugiperda Sf-9 cells infected with Autographa californica nuclear polyhedrosis virus (AcNPV) were assayed with various protease inhibitors. This inhibitory analysis revealed that: (1) carboxyl and cysteine proteases were predominantly produced by the insect cells infected with recombinant AcNPV, the gene of which encoded a variant of green fluorescent protein in a portion of the polyhedrin gene of the baculovirus, and (2) the protease activity was almost completely blocked by pepstatin A (carboxyl protease inhibitor) and E64 (cysteine protease inhibitor) in an additive manner in the presence of EDTA. Utilizing the additive property of the inhibitors, the inhibition-based protease assay discriminated between the two protease activities and elucidated the sequential behavior of the carboxyl and cysteine proteases produced in the virus-infected Sf-9 cell culture. The carboxyl protease(s) existed in the virus-infected cells all the time and their level in the medium continuously increased. Uninfected cells also contained a carboxyl protease activity, the level of which was similar to that of the virus-infected cells. At a certain time after virus infection, the cysteine protease activity was largely increased in the virus-infected cells and a significant amount of the protease(s) was released into the medium, due to the cell membranes losing their integrity. The behavior of intracellular and extracellular cysteine protease activities coincided with that of a recombinant protein whose expression was under the control of the viral polyhedrin promoter. Similar examinations with wt-AcNPV-infected and uninfected insect cells showed that the inhibition-based protease assay was useful for analyzing the carboxyl protease and cysteine protease activities emerging in the insect cell (Sf-9)/baculovirus expression system.  相似文献   

12.
It is well known that Tn5B1-4 (commercially known as the High Five) cell line is highly susceptible to baculovirus and provides superior production of recombinant proteins when compared to other insect cell lines.But the characteristics of the cell line do not always remain stable and may change upon continuous passage.Recently an alphanodavirus,named Tn5 Cell Line Virus (or TNCL Virus),was identified in High Five cells in particular.Therefore,we established a new cell line,QB-Tn9-4s,from Trichoplusia ni,wh...  相似文献   

13.
Insect cell culture for industrial production of recombinant proteins   总被引:18,自引:0,他引:18  
Insect cells used in conjunction with the baculovirus expression vector system (BEVS) are gaining ground rapidly as a platform for recombinant protein production. Insect cells present several comparative advantages to mammalian cells, such as ease of culture, higher tolerance to osmolality and by-product concentration and higher expression levels when infected with a recombinant baculovirus. Here we review some of the recent developments in protein expression by insect cells and their potential application in large-scale culture. Our current knowledge of insect cell metabolism is summarised and emphasis is placed on elements useful in the rational design of serum-free media. The culture of insect cells in the absence of serum is reaching maturity, and promising serum substitutes (hydrolysates, new growth and production-enhancing factors) are being evaluated. Proteolysis is a problem of the BEVS system due to its lytic nature, and can, therefore, be a critical issue in insect cell bioprocessing. Several cell- or baculovirus proteases are involved in degradation events during protein production by insect cells. Methods for proteolysis control, the optimal inhibitors and culture and storage conditions which affect proteolysis are discussed. Finally, engineering issues related to high-density culture (new bioreactor types, gas exchange, feeding strategies) are addressed in view of their relevance to large-scale culture.  相似文献   

14.
Cardiac myofibrillar proteins, like all other intracellular proteins, are in a dynamic state of continual degradation and resynthesis. The balance between these opposing metabolic processes ultimately determines the number of functional contractile units within each cardiac muscle cell. Although alterations in myofibrillar protein degradation have been shown to contribute to cardiac growth and remodeling, the intracellular proteolytic systems responsible for degrading myofibrillar proteins to their constitutive amino acids are currently unknown. Lactacystin, a recently developed, highly specific proteasome inhibitor, was used in this study to examine the role of the proteasome in myosin heavy chain (MHC) degradation in cultured neonatal rat ventricular myocytes. Cells were treated with growth medium alone or with lactacystin (1-50 microM) for up to 48 h. Lactacystin significantly increased the total protein/DNA ratio and markedly prolonged MHC half-life. Other proteasome inhibitors, namely carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (10 microM) and N-acetyl-L-leucyl-L-leucyl-norleucinal (100 microM), were also effective in suppressing MHC degradation. Lactacystin and other proteasome inhibitors also suppressed the markedly accelerated MHC degradation associated with Ca2+ channel blockade but did not prevent the disassembly and loss of myofibrils that accompanied contractile arrest. Thus, sarcomere disassembly precedes the degradation of MHC, which is at least in part mediated by the proteasome.  相似文献   

15.
Recombinant proteins secreted from plant suspension cells into the medium are susceptible to degradation by host proteases secreted during growth. Some degradation phenomena are inhibited in the presence of various protease inhibitors, such as EDTA or AEBSF/PMSF, suggesting the presence of different classes of proteases in the medium. Here, we report the results of a proteomic analysis of the extracellular medium of a Nicotiana tabacum bright yellow 2 culture. Several serine proteases belonging to a Solanaceae-specific subtilase subfamily were identified and the genes for four cloned. Their expression at the RNA level during culture growth varied depending on the gene. An in-gel protease assay (zymography) demonstrated serine protease activity in the extracellular medium from cultures. This was confirmed by testing the degradation of an antibody added to the culture medium. This particular subtilase subfamily, therefore, represents an interesting target for gene silencing to improve recombinant protein production. Key message The extracellular medium of Nicotiana tabacum suspension cells contains serine proteases that degrade antibodies.  相似文献   

16.
The proteolytic activity of High-Five insect cell culture supernatants was analysed using substrate gel electrophoresis (zymography). During growth in serum-free media, High-Five cells constitutively expressed and secreted proteases that were active on casein gel but not on gelatin or bovine serum albumin gels. Two main protease bands were visible at about 41–42 kDa and 32–33 kDa. By addition of various protease inhibitors in the incubation buffer, the proteases were identified as metalloproteases as complete and specific inhibition of the proteolytic activities was only obtained by 1,10-phenanthroline.  相似文献   

17.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel-nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS-PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH(2)-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues -180 to -175, NH(2)-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH(2)-terminal sequence, LDXNQLY, corresponding to residues -73 to -67 of the proregion peptide and thus were generated by removal of 126 residues from the NH(2)-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37 degrees C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (k(cat)/K(m)) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM(-)1 s(-1), respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing approximately 2 x 10(9) High Five cells.  相似文献   

18.
The conditions required for mammalian-type complex N-linked glycosylation of human proteins produced in insect cells with the baculovirus expression vector system were investigated. Marked alterations to N-linked glycosylation of human placental secreted alkaline phosphatase (SEAP) were observed with different baculovirus species, insect cell lines, and cell culture media. When a recombinant Autographa californica nucleopolyhedrovirus (AcMNPV) was used to produce SEAP in Trichoplusia ni (Tn-4h) cells cultured in serum-free medium, structural analyses indicated <1% hybrid and no complex oligosaccharides attached to SEAP, a typical result with the baculovirus expression vector system. However, when fetal bovine serum was added to the culture medium, 48 +/- 4% of the oligosaccharides were hybrid or complex (but asialylated) glycans. When a recombinant T. ni nucleopolyhedrovirus (TnSNPV) was similarly used to express SEAP in Tn-4h cells cultured in serum-containing medium, only 24 +/- 3% of the glycans contained terminal N-acetylglucosamine and/or galactose residues. In contrast, SEAP produced in Sf9 cells grown in serum-containing medium with AcMNPV contained <1% hybrid oligosaccharides and no complex oligosaccharides. The results illustrate that baculovirus type, host cell type, and the growth medium all have a strong influence on the glycosylation pathway in insect cells, resulting in significant alterations in structures and relative abundance of N-linked glycoforms. Although the addition of sialic acid residues to the SEAP glycans was not detected, possible approaches to obtain sialylated glycans are discussed.  相似文献   

19.
Cells rely on complementary proteolytic pathways including the ubiquitin–proteasome system and autophagy to maintain proper protein degradation. There is known to be considerable interplay between them, whereby the loss of one clearance system results in compensatory changes in other proteolytic pathways of the cell. Disturbances in proteolysis are known to occur in Alzheimer's disease, and potentially contribute to neurophysiological and neurodegenerative processes. Currently, few data are available on how the presence of wild type and mutant amyloid precursor protein (APPwt and APPmut) potentially alters the reciprocal interplay between the different intracellular proteolytic pathways. This study used human SH-SY5Y neuronal cell lines, and SH-SY5Y transfected with either APPwt or APPmut (valine-to-glycine substitution at position 717), in order to explore if the presence of APPwt or APPmut altered the downstream effects of pharmacological proteasome or autophagy inhibition. The occurrence of APPwt or APPmut was observed to disturb proteasome or autophagy activities upon treatment with proteasome inhibitors or authophagy inhibitors. Interestingly, APPwt and APPmut expression was observed to significantly and robustly enhance the induction in cathepsin B following the administration of an established proteasome inhibitor. The presence of APPwt and APPmut also significantly reduced the elevation in ubiquitinated proteins following proteasome inhibitor treatments. Our data strongly suggest that APP is able to affect the downstream effects of protease inhibition in neural cells including enhancement of cathepsin B activity, with these changes in cathepsin B significantly and inversely related to the levels of ubiquitinated protein.  相似文献   

20.
It is well known that Tn5B1-4 (commercially known as the High Five) cell line is highly susceptible to baculovirus and provides superior production of recombinant proteins when compared to other insect cell lines. But the characteristics of the cell line do not always remain stable and may change upon continuous passage. Recently an alphanodavirus, named Tn5 Cell Line Virus (or TNCL Virus), was identified in High Five cells in particular. Therefore, we established a new cell line, QB-Tn9-4s, from Trichoplusia ni, which was determined to be free of TNCL virus by RT-PCR analysis. In this paper, we describe the development of a novel cell clone, QB-CL-B, from a low passage QB-Tn9-4s cell line and report its susceptibility to AcMNPV, and the level of recombinant protein production. This cell clone was similar to its parental cells QB-Tn9-4s and Tn5B1-4 cells in morphology and growth rate; although it also showed approximately the same responses to AcMNPV infection and production of occlusion bodies, there were higher levels of recombinant protein production in comparison to QB-Tn9-4s (parental cells) and High5 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号