首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Exercise training and hypertension induced cardiac hypertrophy but modulate differently left ventricle (LV) function. This study set out to evaluate cardiac adaptations induced by moderate exercise training in normotensive and untreated severe hypertensive rats. Four groups of animals were studied: normotensive (Ctl) and severe hypertensive (HT) Wistar rats were assigned to be sedentary (Sed) or perform a moderate exercise training (Ex) over a 10-wk period. Severe hypertension was induced in rat by a two-kidney, one-clip model. At the end of the training period, hemodynamic parameters and LV morphology and function were assessed using catheterism and conventional pulsed Doppler echocardiography. LV histology was performed to study fibrosis infiltrations. Severe hypertension increased systolic blood pressure to 202 +/- 9 mmHg and induced pathological hypertrophy (LV hypertrophy index was 0.34 +/- 0.02 vs. 0.44 +/- 0.02 in Ctl-Sed and HT-Sed groups, respectively) with LV relaxation alteration (early-to-atrial wave ratio = 2.02 +/- 0.11 vs. 1.63 +/- 0.12). Blood pressure was not altered by exercise training, but arterial stiffness was reduced in trained hypertensive rats (pulse pressure was 75 +/- 7 vs. 62 +/- 3 mmHg in HT-Sed and HT-Ex groups, respectively). Exercise training induced eccentric hypertrophy in both Ex groups by increasing LV cavity without alteration of LV systolic function. However, LV hypertrophy index was significantly decreased in normotensive rats only (0.34 +/- 0.02 vs. 0.30 +/- 0.02 in Ctl-Sed and Ctl-Ex groups, respectively). Moreover, exercise training improved LV passive filling in Ctl-Ex rats but not in Ht-Ex rats. In this study, exercise training did not reduce blood pressure and induced an additional physiological hypertrophy in untreated HT rats, which was slightly blunted when compared with Ctl rats. However, cardiac function was not worsened by exercise training.  相似文献   

2.
3.
To examine whether and how heart ANG II influences the coordination between cardiomyocyte hypertrophy and coronary angiogenesis and contributes to the pathogenesis of diabetic cardiomyopathy, we used Spontaneously Diabetic Torii (SDT) rats treated without and with olmesartan medoxomil (an ANG II receptor blocker). In SDT rats, left ventricular (LV) ANG II, but not circulating ANG II, increased at 8 and 16 wk after diabetes onset. SDT rats developed LV hypertrophy and diastolic dysfunction at 8 wk, followed by LV systolic dysfunction at 16 wk, without hypertension. The SDT rat LV exhibited cardiomyocyte hypertrophy and increased hypoxia-inducible factor-1α expression at 8 wk and to a greater degree at 16 wk and interstitial fibrosis at 16 wk only. In SDT rats, coronary angiogenesis increased with enhanced capillary proliferation and upregulation of the angiogenic factor VEGF at 8 wk but decreased VEGF with enhanced capillary apoptosis and suppressed capillary proliferation despite the upregulation of VEGF at 16 wk. In SDT rats, the phosphorylation of VEGF receptor-2 increased at 8 wk alone, whereas the expression of the antiangiogenic factor thrombospondin-1 increased at 16 wk alone. All these events, except for hyperglycemia or blood pressure, were reversed by olmesartan medoxomil. These results suggest that LV ANG II in SDT rats at 8 and 16 wk induces cardiomyocyte hypertrophy without affecting hyperglycemia or blood pressure, which promotes and suppresses coronary angiogenesis, respectively, via VEGF and thrombospondin-1 produced from hypertrophied cardiomyocytes under chronic hypoxia. Thrombospondin-1 may play an important role in the progression of diabetic cardiomyopathy in this model.  相似文献   

4.
Myofibrillogenesis regulator-1 (MR-1) is a novel homologous gene, identified from a human skeletal muscle cDNA library, that interacts with contractile proteins and exists in human myocardial myofibrils. The present study investigated MR-1 protein expression in hypertrophied myocardium and MR-1 involvement in cardiac hypertrophy. Cardiac hypertrophy was induced by abdominal aortic stenosis (AAS) in Sprague-Dawley rats. Left ventricular (LV) hypertrophy was assessed by the ratio of LV wet weight to whole heart weight (LV/HW) or LV weight to body weight (LV/BW). Rat MR-1 (rMR-1) expression in the myocardium was detected by immunohistochemical and Western blotting analysis. Hypertrophy was induced by ANG II incubation in cultured neonatal rat cardiomyocytes. The effect of rMR-1 RNA interference on ANG II-induced hypertrophy was studied by transfection of cardiomyocytes with an RNA interference plasmid, pSi-1, which targets rMR-1. Hypertrophy in cardiomyocytes was assessed by [3H]Leu incorporation and myocyte size. rMR-1 protein expression in cardiomyocytes was detected by Western blotting. We found that AAS resulted in a significant increase in LV/HW and LV/BW: 89% and 86%, respectively (P < 0.01). Immunohistochemistry and Western blot analysis demonstrated upregulated rMR-1 protein expression in hypertrophic myocardium. ANG II induced a 24% increase in [3H]Leu incorporation and a 65.8% increase in cell size compared with control cardiomyocytes (P < 0.01), which was prevented by treatment with losartan, an angiotensin (AT1) receptor inhibitor, or transfection with pSi-1. rMR-1 expression increased in ANG II-induced hypertrophied cardiomyocytes, and pSi-1 transfection abolished the upregulation. These findings suggest that MR-1 is associated with cardiac hypertrophy in rats in vivo and in vitro.  相似文献   

5.
Hypertension‐induced left ventricular hypertrophy (LVH) is an independent risk factor for heart failure. Regression of LVH has emerged as a major goal in the treatment of hypertensive patients. Here, we tested our hypothesis that the valosin‐containing protein (VCP), an ATPase associate protein, is a novel repressor of cardiomyocyte hypertrophy under the pressure overload stress. Left ventricular hypertrophy (LVH) was determined by echocardiography in 4‐month male spontaneously hypertensive rats (SHRs) vs. age‐matched normotensive Wistar Kyoto (WKY) rats. VCP expression was found to be significantly downregulated in the left ventricle (LV) tissues from SHRs vs. WKY rats. Pressure overload was induced by transverse aortic constriction (TAC) in wild‐type (WT) mice. At the end of 2 weeks, mice with TAC developed significant LVH whereas the cardiac function remained unchanged. A significant reduction of VCP at both the mRNA and protein levels in hypertrophic LV tissue was found in TAC WT mice compared to sham controls. Valosin‐containing protein VCP expression was also observed to be time‐ and dose‐dependently reduced in vitro in isolated neonatal rat cardiomyocytes upon the treatment of angiotensin II. Conversely, transgenic (TG) mice with cardiac‐specific overexpression of VCP showed a significant repression in TAC‐induced LVH vs. litter‐matched WT controls upon 2‐week TAC. TAC‐induced activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling observed in WT mice LVs was also significantly blunted in VCP TG mice. In conclusion, VCP acts as a novel repressor that is able to prevent cardiomyocyte hypertrophy from pressure overload by modulating the mTORC1 signaling pathway.  相似文献   

6.
Chronic hypertension results in cardiac hypertrophy and may lead to congestive heart failure. The protein kinase C (PKC) family has been identified as a signaling component promoting cardiac hypertrophy. We hypothesized that PKC activation may play a role mediating hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat heart. Six-month-old SHHF and normotensive control Wistar Furth (WF) rats were used. Hypertension and cardiac hypertrophy were confirmed in SHHF rats. PKC expression and activation were analyzed by Western blots using isozyme-specific antibodies. Compared to WF, untreated SHHF rats had increased phospho-active (10-fold), (4-fold), and (3-fold) isozyme expression. Furthermore, we analyzed the effect of an angiotensin II type 1 receptor blocker (ARB) and hydralazine (Hy) on PKC regulation in SHHF rat left ventricle (LV). Both the ARB and Hy normalized LV blood pressure, but only the ARB reduced heart mass. Neither treatment affected PKC expression or activity. Our data show differential activation of PKC in the hypertensive, hypertrophic SHHF rat heart. Regression of hypertrophy elicited by an ARB in this model occurred independently of changes in the expression and activity of the PKC isoforms examined. (Mol Cell Biochem 270: 63–69, 2005)  相似文献   

7.
We studied the ability of the ECG to detect pathological changes in isoproterenol-induced remodeling of rat heart. Myocardial hypertrophy in rats was induced by repeated injections of isoproterenol (5 mg/kg s.c. 7 days, Iso5, n=7). Single overdose of isoproterenol (150 mg/kg s.c., Iso150, n=7) evoked myocardial infarction followed with ventricular remodeling. The electrocardiograms were recorded in anesthetized animals (thiopenthal 45 mg/kg i.p.) and myocardial contractile performance was analyzed in isolated hearts perfused according to Langendorff. The hypertrophic hearts were characterized by increased heart and left ventricular (LV) weight as well as by thicker LV free wall and interventricular septum. Mean values of LV contraction did not significantly differ from controls. Longer QT interval, QRS complex, negative Q and S waves, higher R amplitude were typical characteristics for Iso5 rats. Iso150 animals showed tendency to decreased systolic blood pressure and heart frequency. Decrease in the thickness of LV compared to Iso5 as well as impaired LV function were related to the dilated left ventricle. Iso150 ECG showed longer QRS and QT, deepened negativity of S wave and mild decrease of R(II) compared to Iso5. Voltage criteria showed that Sokolow-Lyon index is a good predictor of left ventricular hypertrophy in isoproterenol-induced cardiac remodeling without systemic hypertension.  相似文献   

8.
To explore the effects of celecoxib on pressure overload‐induced cardiac hypertrophy (CH), cardiac dysfunction and explore the possible protective mechanisms. We surgically created abdominal aortic constrictions (AAC) in rats to induce CH. Rats with CH symptoms at 4 weeks after surgery were treated with celecoxib [2 mg/100 g body‐weight(BW)] daily for either 2 or 4 weeks. Survival rate, blood pressure and cardiac function were evaluated after celecoxib treatment. Animals were killed, and cardiac tissue was examined for morphological changes, cardiomyocyte apoptosis, fibrosis, inflammation and oxidative stress. Four weeks after AAC, rats had significantly higher systolic, diastolic and mean blood pressure, greater heart weight and enlarged cardiomyocytes, which were associated with cardiac dysfunction. Thus, the CH model was successfully established. Two weeks later, animals had impaired cardiac function and histopathological abnormalities including enlarged cardiomyocytes and cardiac fibrosis, which were exacerbated 2 weeks later. However, these pathological changes were remarkably prevented by the treatment of celecoxib, independent of preventing hypertension. Mechanistic studies revealed that celecoxib‐induced cardiac protection against CH and cardiac dysfunction was due to inhibition of apoptosis via the murine double mimute 2/P53 pathway, inhibition of inflammation via the AKT/mTOR/NF‐κB pathway and inhibition of oxidative stress via increases in nuclear factor E2‐related factor‐2‐mediated gene expression of multiple antioxidants. Celecoxib suppresses pressure overload‐induced CH by reducing apoptosis, inflammation and oxidative stress.  相似文献   

9.
To examine whether cardiac hypertrophy is associated with changes in beta-adrenoceptor signal transduction mechanisms, pressure overload (PO) was induced by occlusion of the abdominal aorta and volume overload (VO) by creation of an aortocaval shunt for 4 and 24 wk in rats. After hemodynamic assessment of the animals, the left ventricular (LV) particulate fraction was isolated for measurement of beta(1)-adrenoceptors and adenylyl cyclase activity, and cardiomyocytes were isolated for monitoring of the intracellular Ca(2+) concentration. Although PO and VO produced cardiac hypertrophy and increased LV end-diastolic pressure at 4 wk, cardiac function was increased in animals subjected to PO but remained unaltered in animals subjected to VO. Cardiac hypertrophy and increased LV end-diastolic pressure were associated with depressed cardiac function at 24 wk of PO or VO, but clinical signs of congestive heart failure were evident only in animals subjected to VO. Isoproterenol-induced increases in cardiac function, activation of adenylyl cyclase activity, and increase in intracellular Ca(2+) concentration, as well as beta(1)-adrenoceptor density, were unaltered by PO at 4 wk, augmented by VO at 4 wk, and attenuated by PO and VO at 24 wk. These results suggest that alterations in beta(1)-adrenoceptor signal transduction are dependent on the type and stage of cardiac hypertrophy.  相似文献   

10.
Angiotensin II has previously been reported to have in vivo and in vitro cardiac hypertrophic effects. We used the salt-sensitive Dahl rat genetic strain to separate mechanical (pressure overload) vs. hormonal (renin-angiotensin system) input in cardiac hypertrophy. Blood pressure was significantly increased and left ventricular hypertrophy, as indexed by LV/BW ratios, was present at 7 and 15 days in rats receiving 4% and 8% NaCl compared to the 1% controls. There was no effect of the angiotensin converting enzyme inhibitor, enalapril maleate, on lowering the blood pressure in 8% NaCl-treated animals, however, there was a significant reduction in LV/BW ratio in 8% NaCl-treated animals that received this drug. Left ventricular angiotensinogen mRNA activity was significantly reduced in rats receiving 4% and 8% NaCl. In this model of hypertension the cardiac hypertrophy which develops is largely dependent on mechanical forces though there remains a significant contribution to this process from either circulating or localized angiotensin II production. Regulation of angiotensinogen gene expression in the hypertrophied left ventricle suggests that volume and electrolyte control of angiotensinogen gene expression in the heart and/or hereditary factors are predominant in the control of regulation of this gene in the left ventricle of Dahl rats.  相似文献   

11.
Hypertension that results in left ventricular (LV) hypertrophy and/or fibrosis can lead to cardiac dysfunction. Spontaneously hypertensive rats (SHR) develop high blood pressure and LV hypertrophy at an early age and are a popular model of human essential hypertension. To investigate the role of the tissue kallikrein-kinin system in cardiac remodeling, an adenovirus containing the human tissue kallikrein gene was injected intravenously into adult SHR and normotensive Wistar-Kyoto (WKY) rats. The blood pressure of WKY rats remained unchanged throughout the experiment. Alternatively, kallikrein gene transfer reduced blood pressure in SHR for the first 2 wk, but had no effect from 3 to 5 wk. Five weeks after kallikrein gene delivery, SHR showed significant reductions in LV-to-heart weight ratio, LV long axis, and cardiomyocyte size; however, these parameters were unaffected in WKY rats. Interestingly, cardiac collagen density was decreased in both SHR and WKY rats receiving the kallikrein gene. Kallikrein gene transfer also increased cardiac capillary density in SHR, but not in WKY rats. The morphological changes after kallikrein gene transfer were associated with decreases in JNK activation as well as transforming growth factor (TGF)-beta 1 and plasminogen activator inhibitor-1 levels in the heart. In addition, kallikrein gene delivery elevated LV nitric oxide and cGMP levels in both rat strains. These results indicate that kallikrein-kinin attenuates cardiac hypertrophy and fibrosis and enhances capillary growth in SHR through the suppression of JNK, TGF-beta 1, and plasminogen activator inhibitor-1 via the nitric oxide-cGMP pathway.  相似文献   

12.
Hearts from severely Cu-deficient rats show a variety of pathological defects, including hypertrophy and, in intact hearts, depression of contractile function. Paradoxically, isolated cardiomyocytes from these rats exhibit enhanced contractile properties. Because hypertrophy and enhanced contractility observed with other pathologies are associated with elevation of insulin-like growth factor-I (IGF)-I, this mechanism was examined for the case of dietary Cu deficiency. Male, weanling Sprague-Dawley rats were provided diets that were deficient (approximately 0.5 mg Cu/kg diet) or adequate (approximately 6 mg Cu/kg diet) in Cu for 5 wk. IGF-I was measured in serum and hearts by an ELISA method, cardiac IGF-I and IGF-II receptors and IGFBP-3 were measured by Western blotting analysis, and mRNAs for cardiac IGF-I and IGF-II were measured by RT-PCR. Contractility of isolated cardiomyocytes was assessed by a video-based edge-detection system. Cu deficiency depressed serum and heart IGF-I and heart IGFBP-3 protein levels and increased cardiac IGF-I receptor protein. Cardiac IGF-II protein and mRNA for cardiac IGF-I and IGF-II were unaffected by Cu deficiency. A Cu deficiency-induced increase in cardiomyocyte contractility, as indicated by increases in maximal velocities of shortening (-dL/dt) and relengthening (+dL/dt) and decrease in time to peak shortening (TPS), was confirmed. These changes were largely inhibited by use of H-1356, an IGF-I receptor blocker. We conclude that enhanced sensitivity to IGF-I, as indicated by an increase in IGF-I receptor protein, accounts for the increased contractility of Cu-deficient cardiomyocytes and may presage cardiac failure.  相似文献   

13.
The present review considers evidence that in chronic hypertension, hypertrophy of the muscles of the resistance vessels and left ventricle (LV) accounts for their intrinsic properties as haemodynamic amplifiers. In spontaneously hypertensive rats (SHR) there is early hypertrophy of both vessels and LV, suggesting that they may initiate hypertension; slow development of alpha-adrenoceptors may contribute to the early preponderance of the LV amplifier. In human hypertension LV hypertrophy occurs in most patients, including a high proportion of mild hypertensives. In Goldblatt one-kidney hypertension the stenosis resistance, which is the initiating cause, accounts for 25% of the rise in blood pressure throughout, with 75% initially due to systemic constrictor action of angiotensin II and later due to the amplifier properties of the hypertrophied heart and vessels. The cardiovascular amplifiers must be important in all chronic hypertension, so that if hypertrophy can be reversed, detection of the initiating mechanism should be easier. Studies in patients indicate that drug therapy can reverse hypertrophy and that subsequent redevelopment of hypertension is markedly slowed. We postulate an intrinsic disturbance of muscle performance in all primary hypertension, which may be triggered through the sympathetic nervous system in some patients and through altered cation transport in others.  相似文献   

14.
15.
16.
The neurotrophin family plays pivotal roles in the development of the nervous system. Recently, the role of the neurotrophin in non-neural tissue has been extensively investigated. Among them, neurotrophin-3 and its receptor TrkC are critical for embryonic heart development, though little is known about neurotrophin-3/TrkC function in adult heart. Moreover, the expressions of other neurotrophin and Trk families in the cardiovascular system have not been fully determined. In adult and neonatal rats, only TrkC mRNA was expressed more abundantly in heart than aorta among the neurotrophin receptors, while all neurotrophins were equally expressed in the cardiovascular system. Immunohistochemistry confirmed the protein expressions of neurotrophin-3/TrkC in rat ventricles. In primary-cultured rat cardiomyocytes, neurotrophin-3 strongly activated p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Jun N-terminal kinase pathways in Western blot analysis. In Northern blot analysis, neurotrophin-3 strongly increased mRNA expressions of cardiac hypertrophic markers (skeletal alpha-actin and atrial natriuretic peptide) in cardiomocytes. [(3)H]-phenylalanine uptake into cardiomyocytes, myofilament reorganization, and cardiomyocyte size were also augmented with neurotrophin-3 stimulation, indicating that neurotrophin-3 is a novel cardiac hypertrophic factor. Unexpectedly, neurotrophin-3 was downregulated in cardiac hypertrophy induced by pressure overload (in vivo), and in cardiomyocyte hypertrophy evoked by endothelin-1 stimulation (in vitro). Interestingly, the cell size and BNP mRNA expression level (markers of hypertrophy) were greater in cardiomyocytes treated with both neurotrophin-3 and endothelin-1 than in those stimulated with endothelin-1 alone. These findings demonstrate that neurotrophin-3 is a unique hypertrophic factor, which is paradoxically downregulated in cardiac hypertrophy and might counteract hypertrophic change.  相似文献   

17.
There is some evidence that cardiac rather than circulating insulin-like growth factor-1 (IGF-1) levels contribute to the development of renovascular hypertensive left ventricular hypertrophy (LVH), remaining unknown the effects of antihypertensive drugs on IGF-1 levels. We have assessed here the preventive effects of enalapril, losartan, propanolol and alpha-methyldopa on left ventricle (LV) and circulating IGF-1 levels in a rat model of hypertension and LVH (Goldblatt, GB). Our results show that relative LV mass and the LV content of IGF-1 were significantly lower with all antihypertensive drugs in GB rats (p<0.001). Serum concentrations of IGF-1 were lower in GB rats treated with enalapril, alpha-methyldopa and propanolol (p<0.01), but not in those treated with losartan. These results support the hypothesis that local rather than seric IGF-1 contributes to the development of left ventricular hypertrophy induced by pressure overload in the rat.  相似文献   

18.
Using a specific alpha-skeletal actin antibody, we have previously shown, that during hypertension-associated cardiac hypertrophy in the rat, the expression of alpha-skeletal actin in the myocardium is increased, but maintains focal distribution, compared to normotensive animals. In the present study, we have investigated whether alpha-skeletal actin expression can be induced in the absence of hypertension. For this purpose, we have examined transgenic mice overexpressing angiotensinogen exclusively in the heart. These animals are characterized by high cardiac angiotensin II levels and cardiac hypertrophy accompanied or not by high blood pressure depending on their genetic background, i.e. presence of one or two renin genes. Alpha-skeletal actin levels were highly increased in transgenic compared to wild-type myocardium independently of the number of renin genes, indicating that angiotensin II can stimulate alpha-skeletal actin expression in normotensive animals. Additional in vitro experiments using cultured mouse and rat cardiomyocytes showed that angiotension II not only increases alpha-skeletal actin expression but also induces an increase of its incorporation within II-bands compared to control cardiomyocytes. Angiotensin II increases also the expression of alpha-smooth muscle actin in sarcomeres of cardiomyocytes as well as in fibroblastic cells present within the culture.  相似文献   

19.
Cardiac hypertrophy has been known as an independent predictor for cardiovascular morbidity and mortality. Molecular mechanisms underlying the development of heart failure remain elusive. Recently, microRNAs (miRs) have been established as important regulators in cardiac hypertrophy. Here, we reported miR-221 was up-regulated in both transverse aortic constricted mice and patients with hypertrophic cardiomyopathy (HCM). Forced expression of miR-221 by transfection of miR-221 mimics increased myocyte cell size and induced the re-expression of fetal genes, which were inhibited by the knockdown of endogenous miR-221 in cardiomyocytes. The TargetScan algorithm-based prediction identified that p27, a cardiac hypertrophic suppressor, is the putative target of miR-221, which was confirmed by luciferase assay and Western blotting. In conclusion, our results demonstrated that miR-221 regulated cardiomyocyte hypertrophy probably through down-regulation of p27, suggesting that miR-221 may be a new intervention target for cardiac hypertrophy.  相似文献   

20.
Hypertension affects 1 in 3 adults in the United States and leads to left ventricular (LV) concentric hypertrophy, interstitial fibrosis, and increased stiffness. The treatment of cardiac fibrosis remains challenging and empiric. Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid that is highly effective in reducing cardiovascular events in patients and cardiac fibrosis and hypertrophy in animals when administered before pressure overload by promoting the increase of anti-inflammatory M1 macrophages. In this study, we investigated whether EPA mitigates the exacerbation of cardiac remodeling and fibrosis induced by established hypertension, a situation that closely recapitulates a clinical scenario. Twelve-week-old spontaneously hypertensive rats were randomized to eat an EPA-enriched or control diet for 20 weeks. We report that rats eating the EPA-enriched diet exhibited a reduction of interstitial cardiac fibrosis and ameliorated LV diastolic dysfunction despite the continuous increase in blood pressure. However, we found that EPA did not have an impact on cardiac hypertrophy. Interestingly, the EPA diet increased mRNA expression of M2 macrophage marker Mrc1 and interleukin-10 in cardiac tissue. These findings indicated that the antifibrotic effects of EPA are mediated in part by phenotypic polarization of macrophages toward anti-inflammatory M2 macrophages and increases of the anti-inflammatory cytokine, interleukin-10. In summary, EPA prevents the exacerbation of cardiac fibrosis and LV diastolic dysfunction during sustained pressure overload. EPA could represent a novel treatment strategy for hypertensive cardiomyopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号