首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The beta2 integrin CD11b/CD18 is an integral membrane protein that is present in the plasma membrane and secondary granules of neutrophils and functions as a major adhesion molecule. Upon cellular activation, there is translocation of intracellular pools of CD11b/CD18 to the plasma membrane in concert with enhanced cellular adhesion. Although much is known about the function of CD11b/CD18, how this protein is transported within the cell is less well defined. Here we report that CD11b/CD18 specifically binds to BAP31, a member of a novel class of sorting proteins regulating cellular anterograde transport. Through experiments aimed at identifying CD11b/CD18-binding proteins, we produced a monoclonal antibody termed E1B2 that recognizes a 28-kDa membrane protein that co-precipitates with CD11b/CD18. Microsequence analysis of the E1B2 antigen revealed that it is BAP31. Co-association of CD11b/CD18 and BAP31 was confirmed in co-immunoprecipitation and protein binding assays. Additional experiments revealed that the binding of BAP31 to CD11b/CD18 was not dependent on divalent cations nor mediated by the I-domain of CD11b. Using glutathione S-transferase fusion chimeras, we determined that binding of CD11b/CD18 to BAP31 is mediated through interactions with the cytoplasmic tail of BAP31. Immunolocalization studies revealed colocalization of BAP31 and CD11b/CD18 within neutrophil secondary granules. Subcellular fractionation studies in polymorphonuclear leukocytes (PMN) revealed similar patterns of redistribution of BAP31 and CD11b/CD18 from fractions enriched in secondary granules to the plasma membrane following stimulation with formylmethionylleucylphenylalanine (fMLP). Given the known sorting properties of BAP31, these findings suggest that BAP31 may play a role in regulating intracellular trafficking of CD11b/CD18 in neutrophils.  相似文献   

2.
BACKGROUND: Epithelial dysfunction and patient symptoms in inflammatory intestinal diseases such as ulcerative colitis and Crohn's disease correlate with migration of neutrophils (PMN) across the intestinal epithelium. In vitro modeling of PMN transepithelial migration has revealed distinct differences from transendothelial migration. By using polarized monolayers of human intestinal epithelia (T84), PMN transepithelial migration has been shown to be dependent on the leukocyte integrin CD11b/CD18 (Mac-1), but not on CD11a/CD18 (LFA-1). Since intercellular adhesion molecule-I (ICAM-1) is an important endothelial counterreceptor for these integrins, its expression in intestinal epithelia and role in PMN-intestinal epithelial interactions was investigated. MATERIALS AND METHODS: A panel of antibodies against different domains of ICAM-1, polarized monolayers of human intestinal epithelia (T84), and natural human colonic epithelia were used to examine the polarity of epithelial ICAM-1 surface expression and the functional role of ICAM-1 in neutrophil-intestinal epithelial adhesive interactions. RESULTS: While no surface expression of ICAM-1 was detected on unstimulated T84 cells, interferon-gamma (IFN gamma) elicited a marked expression of ICAM-1 that selectively polarized to the apical epithelial membrane. Similarly, apically restricted surface expression of ICAM-1 was detected in natural human colonic epithelium only in association with active inflammation. With or without IFN gamma pre-exposure, physiologically directed (basolateral-to-apical) transepithelial migration of PMN was unaffected by blocking monoclonal antibodies (mAbs) to ICAM-1. In contrast, PMN migration across IFN gamma-stimulated monolayers in the reverse (apical-to-basolateral) direction was inhibited by anti-ICAM-1 antibodies. Adhesion studies revealed that T84 cells adhered selectively to purified CD11b/CD18 and such adherence, with or without IFN gamma pre-exposure, was unaffected by ICAM-1 mAb. Similarly, freshly isolated epithelial cells from inflamed human intestine bound to CD11b/CD18 in an ICAM-1-independent fashion. CONCLUSIONS: These data indicate that ICAM-1 is strictly polarized in intestinal epithelia and does not represent a counterreceptor for neutrophil CD11b/CD18 during physiologically directed transmigration, but may facilitate apical membrane-PMN interactions after the arrival of PMN in the intestinal lumen.  相似文献   

3.
H2O2 activates CD11b/CD18-dependent cell adhesion   总被引:1,自引:0,他引:1  
Treatment of monoblastoid U-937 cells with low concentrations of H2O2 caused adhesion of the cells to plastic. The H2O2 induced adhesion was rapid with a t1/2 of congruent to 6 min and was optimally stimulated by 100 microM H2O2 with an ED50 of congruent to 50 microM. The response to H2O2 closely resembled the adhesive response of U-937 cells to phorbol esters in its time dependency, requirement for extracellular Mg2+ and inhibition by cytochalasin B as well as inhibition by monoclonal antibodies against the leucocyte adhesion molecules CD11b and CD18. Phorbol ester treatment of U-937 cells stimulated the phosphorylation of at least three endogenous substrates, pp28, pp34 and pp43, of which pp28 and pp43 also responded to H2O2-treatment with increased 32P-incorporation. The results suggest that H2O2 might be a physiological modulator of leucocyte adhesion, possibly operating by activating protein kinase C.  相似文献   

4.
5.
Calcium signaling capacity of the CD11b/CD18 integrin on human neutrophils.   总被引:21,自引:0,他引:21  
The CD11b/CD18 integrin is a major cell adhesion molecule of myelomonocytic cells. Exposure of human neutrophils in suspension to CD11b or CD18 monoclonal antibodies (mAbs)2 does not affect the resting level of cytosolic free Ca2+ in these cells; however, a subsequent cross-linking of either of these antibodies triggers a prompt and significant cytosolic-free Ca2+ transient lasting about 10 min. The rise in cytosolic-free Ca2+ (from 130 +/- 2 to 414 +/- 12 nM or 111 +/- 12 to 331 +/- 22 nM caused by cross-linking of CD11b or CD18 subunits, respectively) is due to both mobilization of Ca2+ from intracellular stores and influx of Ca2+ across the plasma membrane. Cross-linking of the common leukocyte antigen (CD45) did not alter the basal level of cytosolic free Ca2+. In accordance with other adherence-induced phenomena and with CD11/CD18-mediated phagocytosis, these Ca2+ signals were only modestly affected by pertussis toxin. Thus, the present data clearly indicate that the CD11b/CD18 integrin on human neutrophils is capable of inducing a prompt cytosolic-free Ca2+ signal. These findings directly support the recent suggestion that the CD11b/CD18 integrin is responsible for the "spontaneous oscillations" of cytosolic-free Ca2+ observed in adherent neutrophils and, at least partially, also explain how integrin-mediated adherence can modify the functional responsiveness of neutrophils to a subsequent agonist stimulation.  相似文献   

6.
Human neutrophils exposed to protein-coated polystyrene or cultured endothelial monolayers produce large quantities of H2O2 in response to soluble stimuli that elicit little or no secretion of reactive oxygen species from cells in suspension. To characterize the mechanisms involved in this adherence-dependent respiratory burst, we have investigated the possible role of one integrin known to participate in the adhesion of neutrophils to endothelial cells, CD11b/CD18 (Mac-1). H2O2 production was examined with chemotactic factor-stimulated human and canine neutrophils exposed to protein-coated surfaces and cultured human and canine endothelial cells. The two protein-coated surfaces used were type I collagen-coated glass or plastic, a surface to which neither human nor canine neutrophils adhered, and keyhole limpet hemocyanin (KLH)-coated glass or plastic, a surface to which human and canine neutrophils adhered only after chemotactic stimulation. FMLP-stimulated human neutrophils and platelet activating factor-stimulated canine neutrophils failed to produce detectable H2O2 when in contact with type I collagen, but secreted large amounts of H2O2 when adherent to KLH or endothelial cell monolayers. FMLP-stimulated neutrophils from patients with CD18-deficiency failed to adhere to any of these surfaces and failed to produce H2O2 under these conditions. mAb reactive with CD18 and CD11b were equally effective in markedly inhibiting the adhesion of normal human neutrophils to these surfaces and markedly inhibited the production of H2O2. A mAb reactive with CD18 blocked adhesion of stimulated canine neutrophils, and mAb directed against both CD18 and CD11b blocked H2O2 production by canine neutrophils on KLH and endothelium. A nonbinding mAb and a mAb reactive with CD11a did not inhibit H2O2 production of human cells on KLH or endothelial monolayers, and nonbinding and binding control mAb did not inhibit H2O2 production by canine neutrophils. These results indicate that Mac-1 (CD11b/CD18) can mediate adhesion-dependent H2O2 production by human and canine neutrophils exposed to chemotactic factors.  相似文献   

7.
Interaction of LPS with monocytes and neutrophils is known to occur via CD14 and is strongly enhanced by LPS-binding protein (LBP). Integrins as well as CD14 play a role in the interaction of erythrocytes (E) coated with LPS or whole Gram-negative bacteria with phagocytes. We reasoned that the density of LPS on a particle is an important determinant in these interactions. Therefore, E were coated with different concentrations of LPS (ELPS). The binding of these ELPS to neutrophils was evaluated by flow cytometry. Simultaneously, we measured fMLP receptor expression to evaluate neutrophil activation. ELPS only bound to neutrophils in the presence of LBP. Blocking CD14 inhibited both activation and binding, whereas blocking complement (C) receptor 3 (CR3) inhibited binding but not activation. TNF activation restored ELPS binding in CD14-blocked cells but not in cells in which CR3 was blocked. Salmonella minnesota did bind to neutrophils independent of CR3 or CD14. The addition of LBP enhanced binding twofold, and this surplus was dependent upon CD14 but not on CR3. We conclude that ELPS interact with neutrophils via CD14, initially giving rise to cell activation; subsequently, binding is solely mediated by activated CR3.  相似文献   

8.
C receptor CR3 (iC3b-receptor, CD11b/CD18) plays an essential role in several phagocytic and adhesive neutrophil functions. Recent evidence suggests that stimulus-induced phosphorylation of the CR3 beta-chain, CD18, may mediate certain neutrophil functions by transiently converting the molecule to an activated state. Staurosporine, a protein kinase C inhibitor that blocks PMA-induced CD18 phosphorylation, was used to study the functional relevance of this event. Neutrophils adhered to glass were assayed for binding and phagocytosis of iC3b-opsonized sheep E (EC3bi) in the presence or absence of PMA and/or staurosporine. Binding of EC3bi was markedly increased, not only by PMA, but also by staurosporine and by a combination of both agents (three- to sevenfold). The enhancement of rosetting by staurosporine was likely caused by increased surface expression of CR3 via exocytosis of specific granular contents. In contrast, staurosporine alone did not stimulate phagocytosis of EC3bi and markedly inhibited PMA-induced phagocytosis. Staurosporine also inhibited phagocytosis of yeast beta glucan particles, a CR3 ligand that, in contrast to EC3bi, is bound and ingested without additional prior treatment with PMA. beta glucan phagocytosis was associated with a low level of CD18 phosphorylation. Staurosporine did not block phagocytosis in general, because this agent had relatively little effect on FcR-mediated phagocytosis. These data demonstrate that phagocytosis mediated by CR3 requires activation of CR3 via a staurosporine-sensitive pathway. Increased binding of EC3bi, a function of increased surface expression of CR3, does not require activation of CR3 by such a pathway, confirming previous evidence for the independence of these two phenomena. A direct role for CD18 phosphorylation in the activation of CR3 for phagocytosis is consistent with these data.  相似文献   

9.
Abstract In this study direct immunofluorescence and flow cytometry with calibration using quantitative bead standards were used to enumerate the cell surface receptors CD11a/CD18, CD11b/CD18 and L-selectin. Holding blood at room temperature and fixation of samples prior to staining induced changes in expression, while immediate staining of polymorphonuclear granulocytes (PMN) in whole blood followed by fixation produced accurate values. The ranges of PMN adhesion molecule expression in 10 normal individuals were CD11a/CD18: 14794–28725, CD11b/CD18: 5300–11939 and L-selectin: 35662–61654 receptors per cell. Differences within individuals over 4 h were also observed. Adhesion molecule expression is used as an index of the adhesive function and state of activation of the cell. The data presented here shows that there is inherent variability in the expression of the PMN adhesion molecules between and within individuals, thus direct comparisons of PMN adhesion molecule expression between patients and “normals” must be interpreted with caution.  相似文献   

10.
《Biomarkers》2013,18(7):473-479
Inhaled endotoxin (lipopolysaccharide, LPS) initiates an inflammatory response and leads to the expression of CR3 (CD11b/CD18) receptors on polymorphonuclear leukocytes (PMNs). We determined if PMN activation in nasal lavage fluid (NLF) is a possible biomarker of occupational endotoxin exposure. Seven subjects exposed to endotoxin provided NLF samples that were split into three aliquots (negative control – 1?M nicotinamide; sham; positive control – 11 ηg of exogenous LPS) and PMN activation was measured using a chemiluminometer. Differences in mean PMN activation were apparent, negative control: 548?±?15.65 RLU 100 μl?1; sham: 11469?±?2582 RLU 100 μl?1; positive control: 42026?±?16659 RLU 100 μl (n?=?7; p <0.05). This technique shows promise as a diagnostic method for measuring upper airway LPS exposure.  相似文献   

11.
Upon stimulation with C5a, TNF, or phorbol dibutyrate (PDB), polymorphonuclear leukocytes (PMN) exhibit first an increase then a decrease in adhesion to unstimulated endothelial cells (EC). Essentially all of this adhesion is mediated by the CD18 family of leukocyte integrins on PMN. To determine the individual roles of CD11a/CD18 (LFA-1), CD11b/CD18 (CR3, Mac-1) and CD11c/CD18 (p150,95) in adhesion of PDB-stimulated PMN to unstimulated EC, mAb against the CD11 chains were used. mAb against CD11a or CD11b each blocked adhesion of PMN to EC by approximately 50%, but mAb against CD11c had no effect. Inasmuch as a combination of anti-CD11a and CD11b mAb completely blocked adhesion, it appears that CD11a/CD18 and CD11b/CD18 make approximately equal contributions to binding, and CD11c does not participate. Anti-CD11a or CD11b each blocked adhesion by about 50% throughout the transient time course of PDB-stimulated adhesion, indicating that the capacity of each of these receptors to bind EC is transiently activated by PDB. We next examined the role of ICAM-1 on EC as a ligand for CD18. Two anti-ICAM-1 mAb (LB-2 and 84H10) each inhibited PMN adhesion in a dose-dependent fashion, reaching a maximal inhibition of approximately 50%. Anti-ICAM-1 mAb blocked the CD11a/CD18-dependent portion of adhesion because concomitant use of anti-CD11a and anti-ICAM-1 did not cause additive inhibition. In contrast, anti-CD11b plus anti-ICAM-1 resulted in complete blockade of adhesion. This result suggests that CD11a/CD18 recognizes ICAM-1 on EC, but CD11b/CD18 recognizes a different ligand(s). To determine if CD11b CD18 has the ability to recognize ICAM-1, human macrophages were plated on culture surfaces coated with purified ICAM-1. Interaction of CD11a/CD18 with the surface-bound ICAM-1 resulted in selective down-modulation of CD11a/CD18 from the apical portion of the macrophages. In contrast, ICAM-1-coated surfaces did not down-modulate CD11b/CD18. The data suggest that CD11b/CD18 does not recognize ICAM-1, and that this receptor functions in adhesion of PMN to EC by recognizing novel ligand(s) on EC.  相似文献   

12.
Gram-negative bacterial septicemia is a common clinical syndrome resulting, in part, from the activation of phagocytic leukocytes by LPS. By using flow cytometry, we have characterized LPS-induced expression of the beta 2 integrin CD11b/CD18. After exposure to Salmonella minnesota R595 LPS, expression of neutrophil CD11b/CD18 is rapidly upregulated, beginning within 5 min and achieving a peak fluorescence (typically two- to threefold over base line) by 30 min. The increase in CD11b/CD18 expression was similar in kinetics and magnitude to that produced by FMLP, PMA, and human rTNF-alpha. Concentrations of LPS necessary to stimulate a response were as low as 1 ng/ml of R595 LPS; a maximal response was observed between 30 and 100 ng/ml. The upregulation of CD11b/CD18 due to LPS was not interrupted by protein synthesis inhibitors. A group of glucosamine disaccharide lipid A-like molecules: Rhodobacter sphaeroides lipid A, lipid IVA, KDO2IVA, and deacylated LPS were able to block the stimulatory effect of LPS. This inhibition was specific for the actions of LPS as stimulation of polymorphonuclear leukocytes (PMN) by FMLP, human rTNF alpha, PMA, and rewarming were not altered by the disaccharide inhibitors. PMN which were exposed to the specific disaccharide LPS antagonists and then washed, were refractory to stimulation by LPS. The monosaccharide lipid A precursor lipid X also blocked stimulation of neutrophils by LPS, although with a 100-fold reduction in potency. Unlike the disaccharide inhibitors, PMN exposed to lipid X were still responsive to LPS stimulation after washing. The PMN response to LPS was less sensitive in the absence of serum, although upregulation of CD11b/CD18 could still be seen using higher concentrations of LPS. Monoclonal antibody directed against CD14 (clone 3C10), also specifically inhibited LPS induced PMN CD11b/CD18 expression both in the presence and absence of serum. These findings support the hypothesis that LPS stimulates neutrophils by interacting with specific cellular receptors.  相似文献   

13.
We report the identification of novel small molecule agonists of integrin CD11b/CD18, which increased, in a dose-dependent manner, the adhesion of the integrin CD11b/CD18 expressing cells to two physiologically relevant ligands: Fibrinogen and iC3b. Compound 6 showed an ex vivo EC50 of 10.5 μM and in vitro selectivity for binding to the recombinant αA-domain of CD11b/CD18. In silico docking experiments suggest that the compounds recognized a hydrophobic cleft in the ligand-binding αA-domain, implying an allosteric mechanism of modulation of integrin affinity by this novel compound.  相似文献   

14.
The protein C pathway is a primary regulator of blood coagulation and a critical component of the host response to inflammatory stimuli. The most recent member of this pathway is the endothelial protein C receptor (EPCR), a type I transmembrane protein with homology to CD1d/MHC class I proteins. EPCR accelerates formation of activated protein C, a potent anticoagulant and antiinflammatory agent. The current study demonstrates that soluble EPCR binds to PMA-activated neutrophils. Using affinity chromatography, binding studies with purified components, and/or blockade with specific Abs, it was found that soluble EPCR binds to proteinase-3 (PR3), a neutrophil granule proteinase. Furthermore, soluble EPCR binding to neutrophils was partially dependent on Mac-1 (CD11b/CD18), a beta(2) integrin involved in neutrophil signaling, and cell-cell adhesion events. PR3 is involved in multiple diverse processes, including hemopoietic proliferation, antibacterial activity, and autoimmune-mediated vasculitis. The observation that soluble EPCR binds to activated neutrophils via PR3 and a beta(2) integrin suggests that there may be a link between the protein C anticoagulant pathway and neutrophil functions.  相似文献   

15.
The integrin receptor CD11b/CD18 is normally kept in a low adhesive state and can be activated by many different agents. However, the mechanism underlying receptor activation is not yet fully understood. We hypothesized that the extracellular, membrane-proximal regions of CD11b/CD18 are critically involved in modulation of its adhesive functions. To test our hypothesis, we perturbed the extracellular, membrane-proximal regions of individual CD11b and CD18 subunits and studied their effect on ligand binding, receptor clustering, and lipid raft association. We report here three major findings: 1) perturbation of the extracellular, membrane-proximal region of either subunit leads to enhanced adhesion, caused by changes in receptor conformation, but not the state of receptor clustering or lipid raft association; 2) the CD11b subunit plays a more important role in confining the receptor in an inactive state; and 3) upon modification of the extracellular, membrane-proximal region, the mutant CD11b/CD18 acquires the ability to respond to stimulation by "inside-out" signaling. Our results suggest that the extracellular, membrane-proximal region of the receptor plays an important role in integrin activation and therefore could be targeted by certain cell surface proteins as a conduit to control the integrin "inside-out" signaling process.  相似文献   

16.
The role of beta2-integrins CD11b/CD18 and CD 11c/CD 18 in adhesion and migration of leukocytes on fibrinogen was studied. The monoclonal antibodies against CD11b inhibited the spontaneous adhesion of monocytic THP-1 cells on fibrinogen, whereas antibodies to CD11c more effectively inhibited the adhesion stimulated by chemokine MCP-1. By the RNA-interference method the clones of THP-1 with reduced expression of CD11b and general beta2-subunit CD18 were obtained. MCP-I stimulated the adhesion to fibrinogen of THP-1 cells of wild-type and mutant cells with reduced expression of CD11b (THP-1-CD11b-low), but not of cells with low expression of CD18 (THP-1-CD18-low). THP-1-CD18-low cells were also characterized by the impaired chemotaxis in presence of MCP-1. The data obtained suggest that spontaneous cell adhesion to fibrinogen is mediated to a greater extent by CD11b/CD18 integrins, while chemokine-stimulated adhesion and migration is mostly dependent on CD11c/CD18 molecules.  相似文献   

17.
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (˜30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.  相似文献   

18.
《MABS-AUSTIN》2013,5(5):820-828
Recombinant single domain antibodies (nanobodies) constitute an attractive alternative for the production of neutralizing therapeutic agents. Their small size warrants rapid bioavailability and fast penetration to sites of toxin uptake, but also rapid renal clearance, which negatively affects their performance. In this work, we present a new strategy to drastically improve the neutralizing potency of single domain antibodies based on their fusion to a second nanobody specific for the complement receptor CD11b/CD18 (Mac-1). These bispecific antibodies retain a small size (?30 kDa), but acquire effector functions that promote the elimination of the toxin-immunocomplexes. The principle was demonstrated in a mouse model of lethal toxicity with tetanus toxin. Three anti-tetanus toxin nanobodies were selected and characterized in terms of overlapping epitopes and inhibition of toxin binding to neuron gangliosides. Bispecific constructs of the most promising monodomain antibodies were built using anti Mac-1, CD45 and MHC II nanobodies. When co-administered with the toxin, all bispecific antibodies showed higher toxin-neutralizing capacity than the monomeric ones, but only their fusion to the anti-endocytic receptor Mac-1 nanobody allowed the mice to survive a 10-fold lethal dose. In a model of delayed neutralization of the toxin, the anti- Mac-1 bispecific antibodies outperformed a sheep anti-toxin polyclonal IgG that had shown similar neutralization potency in the co-administration experiments. This strategy should have widespread application in the development of nanobody-based neutralizing therapeutics, which can be produced economically and more safely than conventional antisera.  相似文献   

19.
Intercellular adhesion molecule-4 (ICAM-4, LW blood group antigen), a member of the immunoglobulin superfamily expressed on red cells, has been reported to bind to CD11a/CD18 and CD11b/CD18 leukocyte integrins. The location of the ICAM-4 binding sites on CD11a/CD18 and CD11b/CD18 are not known. CD11/CD18 integrin I domains have been found to act as major binding sites for physiological ligands and a negatively charged glutamic acid in ICAMs is considered important for binding. ICAM-4 lacks such a residue, which is replaced by an arginine. However, we demonstrate here that ICAM-4 in red cells and transfected fibroblasts interacts specifically with the I domains of CD11a/CD18 and CD11b/CD18 integrins. The binding was inhibited by anti-I domain and anti-ICAM-4 antibodies and it was dependent on divalent cations. Interestingly, ICAM-4 negative red cells were still able to bind to the CD11b/CD18 I domain but the binding of these cells to the CD11a/CD18 I domain was clearly reduced. Using a solid phase assay, we were able to show that isolated I domains directly and specifically bind to purified recombinant ICAM-4 in a cation dependent manner. Competition experiments indicated that the binding sites in ICAM-4 for the CD11a and CD11b I domains are different. However, the ICAM-4 binding region in both I domains seems to overlap with the regions recognized by the ICAM-1 and ICAM-2. Thus we have established that the I domains contain an ICAM-4 binding region in CD11a/CD18 and CD11b/CD18 leukocyte integrins.  相似文献   

20.
Abstract This study investigates the effect of some components of the Staphylococcus aureus cell wall [lipoteichoic acid (LTA), N -acetyl-muramyl-alanyl- d -isoglutamine (MD), muramic acid (MA) and protein A (PA)] in modulating expression of cell-surface adhesion molecules CD11a/CD18, CD11b/CD18 on monocytes qualitatively and quantitatively. Monocytes incubated with bacterial components presented different CD11b/CD18 expressions which were dose-dependent in contrast to controls. The results obtained demonstrated that lymphocytes incubated with bacterial components also increased the expression of CD11a/CD18. The modifications in activation of CD11a/CD18 and CD11b/CD18 expression are probably correlated with modifications of membrane fluidity measured as polarisation fluorescence (P).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号