首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of semi-arid plant communities are determined by the interplay between competition and facilitation among plants. The sign and strength of these biotic interactions depend on plant traits. However, the relationships between plant traits and biotic interactions, and the consequences for plant communities are still poorly understood. Our objective here was to investigate, with a modelling approach, the role of plant reproductive traits on biotic interactions, and the consequences for processes such as plant succession and invasion. The dynamics of two plant types were modelled with a spatially-explicit integrodifferential model: (1) a plant with seed dispersal (colonizer of bare soil) and (2) a plant with local vegetative propagation (local competitor). Both plant types were involved in facilitation due to a local positive feedback between vegetation biomass and soil water availability, which promoted establishment and growth. Plants in the system also competed for limited water. The efficiency in water acquisition (dependent on reproductive and growth plant traits) determined which plant type dominated the community at the steady state. Facilitative interactions between plant types also played an important role in the community dynamics, promoting establishment in the driest conditions and recovery from low biomass. Plants with vegetative propagation took advantage of the ability of seed dispersers to establish on bare soil from a low initial biomass. Seed dispersers were good invaders, maintained high biomass at intermediate and high rainfall and showed a high ability in taking profit from the positive feedback originated by plants with vegetative propagation under the driest conditions. However, seed dispersers lost competitiveness with an increasing investment in fecundity. All together, our results showed that reproductive plant traits can affect the balance between facilitative and competitive interactions. Understanding this effect of plant traits on biotic interactions provides insights in processes such as plant succession and shrub encroachment.  相似文献   

2.
The aim of this field study was to examine how the development of arbuscular mycorrhizal fungi (AMF) on coal mine spoil banks is affected by the presence of plants with different mycorrhizal status. A 3-year trial was conducted on the freshly created spoil bank Vršany, North-Bohemian coal basin, the Czech Republic. Three plant species – non-mycotrophic annual Atriplex sagittata, highly mycotrophic annual Tripleurospermum inodorum (both dominants of early stages of succession) and facultatively mycotrophic Arrhenatherum elatius (a perennial grass species of the later stage of succession) – were planted on 1 m2 plots over 3 years in different sequences that simulated the progress of succession on spoil banks. The development of AMF populations was monitored by evaluation of mycorrhizal colonization of plant roots and by measurement of the mycorrhizal inoculation potential (MIP) of soil. These two parameters were compared between plots inoculated with the mixture of three AMF isolates – Glomus mosseae BEG95, G. claroideum BEG96 and G. intraradices BEG140 – (“inoculated plots”) and plots exposed only to natural dispersal of AMF propagules (“uninoculated plots”). Highly colonized roots of plants together with a high MIP of soil in uninoculated plots were already found at the end of the first season, indicating rapid natural dispersal of AMF propagules. Root colonization of facultatively mycotrophic and non-mycotrophic plants in later years was affected by the mycorrhizal status of the previous plant species. The MIP of soil continuously increased throughout the experiment; in uninoculated plots, the MIP was temporarily decreased if plant species of higher mycotrophy were replaced by species of lower mycotrophy. The results lead to the conclusion that AMF colonize freshly formed sites very quickly and reproduce or accumulate in the soil, which leads to increasing MIP values. However, this infective potential can be decreased if non-mycotrophic plants predominate on the site.  相似文献   

3.
Spatiotemporal dynamic models of plant populations and communities   总被引:2,自引:0,他引:2  
The idea of relating spatial patterns and temporal processes in plant community dynamics is not new, but its transformation into realistic spatiotemporal models is the result of quite recent methodological developments. There are now two classes of analytical model and a broad class of simulation models pertaining to the role of spatial structure in vegetation dynamics. They indicate that any community-dynamical theory intended to be predictive should not omit the spatial aspects of plant population dynamics, because these may radically change the conditions of persistence and coexistence.  相似文献   

4.
Functional roles of remnant plant populations in communities and ecosystems   总被引:5,自引:0,他引:5  
A hypothesis is suggested for functional roles of remnant plant populations in communities and ecosystems. A remnant population is capable of persistence during extended time periods, despite a negative population growth rate, due to long‐lived life stages and life‐cycles, including loops that allow population persistence without completion of the whole life cycle. A list of critera is suggested to help identification of remnant plant populations. Several community and ecosystem features may result from the presence of remnant plant populations. Apart from increasing community and ecosystem resilience just by being present, remnant populations may contribute to resilience through enhancing colonization by other plant species, by providing a persistent habitat for assemblages of animals and microorganisms, and by reducing variation in nutrient cycling. It is suggested that the common ability of plants to develop remnant populations is a contributing factor to ecosystem stability. Remnant populations are important for the capacity of ecosystems to cope with the present‐day impact caused by human society, and their occurrence should be recognized in surveys of threatened plant species and communities.  相似文献   

5.
李明 《生物学杂志》2002,18(6):61-62
介绍了菌根真菌在植物吸收、运输营养物质中的作用,宿主植物体内碳水化合物的流动,菌根真菌和其它根际微生物之间的相互作用。  相似文献   

6.
Biological invasions severely impact native plant communities, causing dramatic shifts in species composition and the restriction of native species to spatially isolated refuges. Competition from resident species and the interaction between resource limitation and competition have been overlooked as mechanisms of community resistance in refugia habitats. We examined the importance of these factors in determining the resistance of California serpentine plant communities to invasion by three common European grasses, Avena barbata, Bromus diandrus, and Hordeum murinum. We added seeds of each of these grasses to plots subjected to six levels of resource addition (N, P, Ca, H2O, all resources together, and a no-addition control) and two levels of competition (with resident community present or removed). Resource limitation and competition had strong effects on the biomass and reproduction of the three invaders. The addition of all resources together combined with the removal of the resident community yielded individual plants that were fourfold to 20-fold larger and sixfold to 20-fold more fecund than plants from control plots. Competitor removal alone yielded invaders that were twofold to sevenfold larger and twofold to ninefold more fecund. N addition alone or in combination with other resources led to a twofold to ninefold increase in the biomass and fecundity of the invaders. No other resource alone significantly affected native or invader performance, suggesting that N was the key limiting resource during our experiment. We found a significant interaction between abiotic and biotic resistance for Bromus, which experienced increased competitive suppression in fertilized plots. The threefold increase in resident biomass with N addition was likely responsible for this result. Our results confirm that serpentine plant communities are severely N limited, which, in combination with competition from resident species, promotes the resistance of these systems to invasions. Our work suggests that better understanding the relative sensitivities of invaders and residents to the physical environment is critical to predicting how abiotic and biotic factors interact to determine community resistance.  相似文献   

7.
The population and community level consequences of positive interactions between plants remain poorly explored. In this study we incorporate positive resource-mediated interactions in classic resource competition theory and investigate the main consequences for plant population dynamics and species coexistence. We focus on plant communities for which water infiltration rates exhibit positive dependency on plant biomass and where plant responses can be improved by shading, particularly under water limiting conditions. We show that the effects of these two resource-mediated positive interactions are similar and additive. We predict that positive interactions shift the transition points between different species compositions along environmental gradients and that realized niche widths will expand or shrink. Furthermore, continuous transitions between different community compositions can become discontinuous and bistability or tristability can occur. Moreover, increased infiltration rates may give rise to a new potential coexistence mechanism that we call controlled facilitation.  相似文献   

8.
In this paper we test the influence of temperature and interference competition by dominant species on the foraging of subordinate species in Mediterranean ant communities. We have analyzed the changes in resource use by subordinate species in plots with different abundances of dominant ants, and in different periods of the day and the year, i.e., at different temperatures. The expected effects of competition by dominant species on foraging of subordinates were only detected for two species in the number of baits occupied per day, and for one species in the number of foragers at pitfall traps. In all three cases, subordinate species were less represented at baits or in traps in plots with a high density of dominants than in plots with a medium or low density of dominants. The number of workers per bait, and the foraging efficiency of subordinate species did not differ in plots differing in dominant abundance. Daily activity rhythms and curves of temperature versus foraging activity of subordinate species were also similar in plots with different abundance of dominant species, indicating no effect of dominants on the foraging times of subordinates. Instead, temperature had a considerable effect on the foraging of subordinate species. A significant relationship was found between maximum daily temperature and several variables related to foraging (the number of foragers at pitfall traps, the number of baits occupied per day, and the number of workers per bait) of a number subordinate species, both in summer and autumn. These results suggest that the foraging of subordinate ant species in open Mediterranean habitats is influenced more by temperature than by competition of dominants, although an effect of dominants on subordinates has been shown in a few cases. In ant communities living in these severe and variable environments, thermal tolerance reduces the importance of competition, and the mutual exclusion usually found between dominant and subordinate species appears to be the result of physiological specialization to different temperature ranges. Received: 8 May 1998 / Accepted: 30 July 1998  相似文献   

9.
J. P. Bakker 《Plant Ecology》1985,62(1-3):391-398
Grazing an abandoned salt marsh causes retrogressive succession, since mid salt-marsh communities change into lower salt-marsh communities. Grazing and mowing are compared in detail. Both management practices enhance species diversity in an abandoned salt marsh. This can be attributed to the removal of litter. The finding that lower salt-marsh species appear more with grazing than with mowing or abandoning is not related to a higher soil salinity as compared to mowing or abandoning, but probably to locally baring of the soil by grazing animals. Only species of pioneer or unstable environments seem to have a persistent seed bank, for other species seed dispersal seems to be a limiting factor for their establishment.Nomenclature follows Heukels & van Ooststroom (1977) for species; Westhoff & den Held (1969) for syntaxa.Mrs R. Rusthoven analyzed the soil samples, Mr E. Leeuwinga drawed the figures, and Mrs J. O'Brien corrected the English text.  相似文献   

10.
This study evaluates the hypothesis that biological grazing refuges have an important role in plant-grazer interactions of grasslands with a long history of grazing. We assessed the hypothesis that clumps of the spiny cactus Opuntia polyacantha provide biological refuges from cattle grazing, affecting cover and seedhead production of associated vascular plants in the shortgrass steppe of the North America. The study was based on sampling inside and outside Opuntia clumps in eight long-term moderately grazed pastures established 60 yr ago and their respective ungrazed controls. Opuntia clumps provided a refuge for seedhead production of the dominant grass ( Bouteloua gracilis ) and for cover and seedhead production of many plant groups. Clumps were also a refuge for species sensitive to grazing (species that decrease with grazing) and barrel-cacti, but not for species preferred by cattle (species with greater proportion in the diet than in the field), exotics or weeds. Our results suggest that these effects were mainly through changes in the microenvironmental conditions resulting from protection effects, even though all potential microenvironmental effects could not be measured. Cacti promoted some negative effects on other plant groups, probably due to the space occupied by cladodes inside cactus clumps. The refuge effects observed at the group level did not translate into strong community level effects. Species diversity ( H' ) was greater in cactus clumps due to lower dominance rather than greater richness. The presence of Opuntia clumps increased landscape-scale diversity. This ecological role of Opuntia clumps as refuge from cattle grazing should be taken into consideration in management practices aimed at cactus eradication in order to increase forage availability for livestock. We discuss the potential role of plant community productivity and grazing history with regard to the importance of natural refuges in structuring grassland communities.  相似文献   

11.
Pathogens are potent selective forces whose importance in shaping the size and structure of individual plant populations and whole communities has been underestimated. Even in situations where host and pathogen have been associated over long periods of time, pathogens regularly affect host fitness by reducing fecundity and increasing mortality either directly or indirectly through reductions in competitive ability. The genetic consequences of such disease-induced reductions in fitness are profound. On a broad geographic scale, race-specific resistance generally occurs more frequently in regions characterized by environments favourable for disease development. Within such areas, however, the distribution of resistant plant genotypes is often very patchy. This probably reflects the importance of extinction and colonization events in the continuing co-evolutionary dynamics of host-pathogen associations. At a demographic level, pathogen-induced reductions in host fitness may lead to changes in the size of populations. In turn, this may lead to changes in the relative diversity of whole communities. Documentation of this scale of interaction is poor, but the devastating consequences of the introduction of pathogens into alien environments provides a salutary reminder of their power to change plant communities radically.  相似文献   

12.
A theory of the spatial and temporal dynamics of plant communities   总被引:14,自引:0,他引:14  
An individual-based model of plant competition for light that uses a definition of plant functional types based on adaptations for the simultaneous use of water and light can reproduce the fundamental spatial and temporal patterns of plant communities. This model shows that succession and zonation result from the same basic processes. Succession is interpreted as a temporal shift in species dominance, primarily in response to autogenic changes in light availability. Zonation is interpreted as a spatial shift in species dominance, primarily in response to the effect of allogenic changes in water availability on the dynamics of competition for light. Patterns of succession at different points along a moisture gradient can be used to examine changes in the ecological roles of various functional types, as well as to address questions of shifts in patterns of resource use through time.Our model is based on the cost-benefit concept that plant adaptations for the simultaneous use of two or more resources are limited by physiological and life history constraints. Three general sets of adaptive constraints produce inverse correlations in the ability of plants to efficiently use (1) light at both high and low availability, (2) water at both high and low availability, and (3) both water and light at low availabilities.The results of this type of individual-based model can be aggregated to examine phenomena at several levels of system organization (i.e., subdisciplines of ecology), including (1) plant growth responses over a range of environmental conditions, (2) population dynamics and size structure, (3) experimental and field observations on the distribution of species across environmental gradients, (4) studies of successional pattern, (5) plant physiognomy and community structure across environmental gradients, and (6) nutrient cycling.  相似文献   

13.
A mathematical model for plant communities in water-limited systems is introduced and applied to a mixed woody-herbaceous community. Two feedbacks between biomass and water are found to be of crucial importance for understanding woody-herbaceous interactions: water uptake by plants' roots and increased water infiltration at vegetation patches. The former acts to increase interspecific competition while the latter favors facilitation. The net interspecific interaction is determined by the relative strength of the two feedbacks. The model is used to highlight new mechanisms of plant-interaction change by studying factors that tilt the balance between the two feedbacks. Factors addressed in this study include environmental stresses and patch dynamics of the woody species. The model is further used to study mechanisms of species-diversity change by taking into consideration tradeoffs in species traits and conditions giving rise to irregular patch patterns.  相似文献   

14.
We tested the hypothesis that small rock-enclosed geologic refuges have an important role in maintaining grazing-sensitive species in grassland with a long history of intense grazing. The study was carried out in Mediterranean grassland in a basalt landscape in northern Israel. Community composition was compared in 63 sites between samples of 1 m2 quadrats in two microhabitats: (1) rock-enclosed, presumed “refuges” and (2) rock-adjacent, “near refuges” but just outside them, accessible to cattle grazing. Median refuge area was 2.75 m2, median rock height and diameter around refuges were 1.10 m and 1.50 m. Median height of residual dry herbage was 1.41 m in refuges, compared to 0.38 m outside, indicating the difference in grazing intensity. Species richness at three scales (quadrat, site, all sites) was significantly greater in the near-refuge than in the refuge habitat. In the latter, many annuals were excluded by dominance of tall perennials. Twelve species (of 103) had significantly higher cover in refuges, including tall perennial grasses, tall annuals, climbers, and a shrub. A total of 53 species with a strong significant negative response to refuges were mostly small and medium height annuals. The intermediate group of 38 species with weak or non-significant responses to refuges included, among others, dominant tall grasses that were abundant both in refuges and just outside them. The latter, as well as most refuge-positive species had shown a positive response to protection in exclosures. The results support the hypothesis that small rock-enclosed habitats—more so than artificial exclosures—are effective grazing refuges for rare, grazing-susceptible species. The contribution of refuges to species richness at the landscape scale is much greater than their proportion of the area. Dispersion from refuges maintains small populations of rare species near refuges and can initiate expansion into the landscape when grazing pressure is lowered.  相似文献   

15.
A model for several algal species which compete both for light and for nutrients, and which are also subject to settling and diffusion, is considered. The settling speeds and diffusion coefficients are assumed to be small, in a sense to be made precise later, and a singular perturbation argument is used. In certain cases vertical segregation of the algal species is observed, and the mechanism for this is interpreted biologically.Supported by the Danish Natural Science Research Council (Grant No. 11-8321)  相似文献   

16.
Question: Plant invasions result from complex interactions between species traits, community characteristics and environmental variations. We examined the effect of these interactions on the invasion potential of two invasive Senecio species, S. inaequidens and S. pterophorus, across three Mediterranean plant communities in a natural park. Location: Catalonia, NE Spain. Methods: We carried out two series of experimental seedling transplantations, in the spring and fall of 2003, in grassland, shrubland and Quercus ilex forest. Competition with neighbouring plants and water availability were manipulated. We evaluated the survival, growth and reproduction with respect to each treatment combination. Results: Any habitat can be colonised if disturbance occurs. In the absence of disturbance, shrubland enhanced the survival of seedlings. Competition with resident vegetation dramatically reduced survival in grassland and forest when establishment occurred in the spring. However, establishment in the fall promoted invasion in grassland and shrubland, even in the undisturbed treatment. Grassland allowed the highest growth and reproductive performance of both species while forest was the most resistant habitat to invasion. S. inaequidens had a higher growth rate and a shorter pre‐reproductive period than S. pterophorus. S. pterophorus produced more biomass and was more dependent on water availability than S. inaequidens. Conclusions: In the light of our results, we recommend surveying open shrublands and grasslands after periods of rainfall. Special attention should be paid to S. pterophorus, which is currently spreading. A preliminary assessment of the invasive‐ness of this plant is given in this study.  相似文献   

17.
Several studies have presented experimental evidence that diversity reduces invasibility in grassland communities. The interpretation of these results has been disputed recently and it was proposed that sampling effects were responsible for the observed decrease of invasibility with diversity. The experiments performed to date were not designed to adequately separate sampling from diversity effects. Using the establishment of native plant species in experimental plant communities as a model of invasibility, we show that the number of invaders decreased with increasing diversity. When the presence of particular species is included, their effects are dominant. Centaurea jacea showed a strong effect at low diversity, whereas Leucanthemum vulgare showed a very strong negative impact at each diversity level. The negative effect of the latter might be related to root‐feeding nematodes that showed far higher abundance in plots with Leucanthemum. However, diversity remained a significant factor in determining the number of invading species and the numbers of an abundant invader.  相似文献   

18.
Grasslands being used in sheep farming systems are managed under a variety of agricultural production, recreational and conservational objectives. Although sheep grazing is rarely considered the best method for delivering conservation objectives in seminatural temperate grasslands, the literature does not provide unequivocal evidence on the impact of sheep grazing on pasture biodiversity. Our aim was therefore to review evidence of the impacts of stocking rate, grazing period and soil fertility on plant communities and arthropod populations in both mesotrophic grasslands typical of agriculturally improved areas and in native plant communities. We therefore conducted a literature search of articles published up to the end of the year 2010 using ‘sheep’ and ‘grazing’ as keywords, together with variables describing grassland management, plant community structure or arthropod taxa. The filtering process led to the selection of 48 articles, with 42 included in the stocking rate dataset, 9 in the grazing period dataset and 10 in the soil fertility dataset. The meta-analysis did not reveal any significant trends for plant species richness or plant community evenness along a wide stocking rate gradient. However, we found frequent shifts in functional groups or plant species abundance that could be explained by the functional properties of the plants in the community. The meta-analysis confirmed that increasing soil fertility decreased plant species richness. Despite the very limited dataset, plant species richness was significantly greater in autumn-grazed pastures than in ungrazed areas, which suggests that choosing an appropriate grazing period would be a promising option for preserving biodiversity in sheep farming systems. Qualitative review indicated that low grazing intensity had positive effects on Orthoptera, Hemiptera (especially phytophagous Auchenorrhyncha) and, despite a diverse range of feeding strategies, for the species richness of Coleoptera. Lepidoptera, which were favoured by more abundant flowering plants, also benefited from low grazing intensities. Spider abundance and species richness were higher in ungrazed than in grazed pastures. In contrast, there are insufficient published studies to draw any firm conclusions on the benefits of late grazing or stopping fertilization on insect diversity, and no grounds for including any of this information in decision support tools at this stage.  相似文献   

19.
Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed.  相似文献   

20.
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号