首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixed cultures of the cellulolytic fungus Trichoderma harzianum with the anaerobic diazotroph Clostridium butyricum were shown to co-operatively degrade cellulose and utilize the degradation products for N2 fixation. Cellulose degradation and N2 fixation were stimulated by small (0.1 mg/ml) additions of (NH4)2SO4. The (NH42SO4 stimulates cellulolysis thereby increasing the supply of cellulose degradation products to the diazotroph. In aerobic environments the anaerobe depends on the respiration of the aerobe to create anaerobic microsites. The N source increased O2 uptake by the fungus increasing the number of sites suitable for the development of the anaerobe. Stimulation in the growth of T. harzianum by (NH42SO4 resulted in increased growth and N2 fixation by Cl. butyricum.  相似文献   

2.
Abstract A purple non-sulfur anoxygenic phototrophic bacterium, Rhodopseudomonas palustris (ATCC 51186; DSM 7375), grew fixing N2 using aromatic compounds as the sole carbon source/electron donor. Benzoate, cinnamate and benzyl alcohol were used as electron donors for N2 fixation, while aniline and nitrobenzene supported poor growth under N2 atmosphere (in the absence of any other combined nitrogen in the medium) but did serve as sole carbon source/e donor in the presence of ammonium chloride as nitrogen source.  相似文献   

3.
The nitrogen use efficiencies (NUE) of N2 fixation, primary NH 4+ assimilation and NO 3 assimilation are compared. The photon and water costs of the various biochemical and transport processes involved in plant growth, N-assimilation, pH regulation and osmolarity generation, per unit N assimilated are respectively likely to be around 5 and 7% greater for N2 fixation than for a combination of NH 4+ and root and shoot NO 3 assimilation as occurs with most crops. Studies on plant and rhizobial genes involved in nodulation and N2 fixation may lead to more rapid nodulation, production of more stress-tolerant N2 fixing systems and transfer of the hydrogenase system to rhizobium/legume symbioses which currently do not have this ability. The activity of an uptake hydrogenase is predicted to decrease the photon cost of diazotrophic plant growth by about 1%.  相似文献   

4.
Plant regulated aspects of nodulation and N2 fixation   总被引:1,自引:0,他引:1  
Abstract. Root nodule organogenesis is described. Plant regulated aspects of nodulation and N2 fixation are reviewed and discussed. Since the effective N2 fixing symbiosis requires the interaction of the host plant and bacterium in an appropriate environment (the rhizosphere and the root nodule) it is essential that research aimed at improving N2 fixation involve a knowledge and understanding of the plant genes that affect nodule development, growth, and function. Current knowledge of host plant genes involved in N2 fixation is summarized. Various experimental approaches to the study of the host plant's contribution to nodulation are noted. The functions of nodule specific proteins (nodulins) in symbiosis are delineated. Future areas of research are suggested.  相似文献   

5.
Fixation of molecular nitrogen by Methanosarcina barkeri   总被引:1,自引:0,他引:1  
Abstract Methanosarcina barkeri cells were observed in ammonia-free anaerobic acetate enrichments for sulfate-reducing bacteria. The capacity of Methanosarcina to grow diazotrophically was proved with a pure culture in mineral media with methanol. The cell yields with N2 or NH4+ ions as nitrogen source were 2.2 g and 6.1 g dry weight, respectively, per mol of methanol. Growth experiments with 15N2 revealed that 84% of the cell nitrogen was derived from N2. Acetylene was highly toxic to Methanosarcina and only reduced at concentrations lower than 100 μmol dissolved per 1 of medium. Assimilation of N2 and reduction of acetylene were inhibited by NH4+ ions. The experiments show that N2 fixation occurs not only in eubacteria but also in archaebacteria. The ecological significance of diazotrophic growth of Methanosarcina is discussed.  相似文献   

6.
The effect of genetic factors in Rhizobium on host plant biomass production and on the carbon costs of N2 fixation in pea root nodules was studied. Nine strains of Rhizobium leguminosarum were constructed, each containing one of three symbiotic plasmids in combination with one of three different genomic backgrounds. The resulting strains were tested in symbiosis with plants of Pisum sativum using a flow-through apparatus in which nodule nitrogenase activity and respiration were measured simultaneously under steady state conditions. Nodules formed by strains containing the background of JI6015 had the lowest carbon costs of N2 fixation (7.10–8.10 μmol C/μmol N2), but shoot dry weight of those plants was also smaller than that of plants nodulated by strains with the background of B151 or JI8400. Nodules formed by these two strain types had carbon costs of N2 fixation varying between 11.26 and 13.95 μmol C/μmol N2. The effect of symbiotic plasmids on the carbon costs was relatively small. A time-course experiment demonstrated that nodules formed by a strain derived from JI6015 were delayed in the onset of nitrogenase activity and had a lower rate of activity compared to nodules induced by a strain with the background of B151. The relationship between nitrogenase activity, carbon costs of N2 fixation and host plant biomass production is discussed.  相似文献   

7.
Bacteria performing anaerobic ammonium oxidation (anammox) are key players in the global nitrogen cycle due to their inherent ability to convert biologically available nitrogen to N2. Anammox is increasingly being exploited during wastewater treatment worldwide, and about 50% of the total N2 production in marine environments is estimated to proceed by the anammox pathway. To fully understand the microbial functionality and mechanisms that control environmental feedbacks of the anammox reaction, key proteins involved in the reaction must be identified. In this study we have utilized an analytical protocol that facilitates detection of proteins associated with the anammoxosome, an intracellular membrane compartment within the anammox bacterium. The protocol enabled us to identify several key proteins of the anammox reaction including a hydrazine hydrolase producing hydrazine, a hydrazine-oxidizing enzyme converting hydrazine to N2 and a membrane-bound ATP synthase generating ATP from the gradients of protons formed in the anammox reaction. We also performed immunogold labelling electron microscopy to determine the subcellular location of the hydrazine hydrolase. The results from our study support the hypothesis that proteins associated with the anammoxosome host the complete suite of reactions during anammox.  相似文献   

8.
A. Gehin, C. Cailliez, E. Petitdemange And L. Benoit. 1996. The degradation of cellulose by Clostridium celulolyticum has been studied in several ways; (1) in batch fermentation in 50-ml sealed-cap flasks, referred to as the control; (2) in batch fermentation with pH at 7.2; (3) fermentation in dialysis which permits elimination of all the products of metabolism; (4) fermentation in dialysis with a constant bubbling of nitrogen; (5) in co-culture with Clostridium A22 in batch with and without pH regulation and with dialysis. H2, CO2, acetate, ethanol and lactate were the major end-products of cellobiose and cellulose fermentation. Compared to batch culture, growth of CI. cellulolyticum on cellobiose increased by a factor of 10 in dialysed culture. The end products from the dialysed culture were detected in a small range compared to the concentration for the batch culture. Related to the biomass, CMCase activities were of the same level, showing a direct relation between the biomass formation and the cellulase production. The percentage of cellulose degradation (50%) by CI. cellulolyticum was greater when dialysis of end products with a constant bubbling of nitrogen took place during the course of fermentation (6 d) in comparison with cultures in 50-ml sealedcap flasks (23%), in a fermentor (36%) or using dialysis without N2 bubbling (40%). The presence of two micro-organisms produced no further enzyme activities and hence the percentage of cellulose degradation was quite similar in mono- and co-culture. No synergistic action was found between two cellulolytic strains.  相似文献   

9.
Cells of Geobacter metallireducens , Magnetospirillum strain AMB-1, Magnetospirillum magnetotacticum and Magnetospirillum gryphiswaldense showed N2-dependent growth, the first anaerobically with Fe(III) as the electron acceptor, and the latter three species microaerobically in semi-solid oxygen gradient cultures. Cells of the Magnetospirillum species grown with N2 under microaerobic conditions were magnetotactic and therefore produced magnetosomes. Cells of Geobacter metallireducens reduced acetylene to ethylene (11.5 ± 5.9 nmol C2H4 produced min−1 mg−1 cell protein) while growing with Fe(III) as the electron acceptor in anaerobic growth medium lacking a fixed nitrogen source. Cells of the Magnetospirillum species, grown in a semi-solid oxygen gradient medium, also reduced acetylene at comparable rates. Uncut chromosomal and fragments from endonuclease-digested chromosomal DNA from these species, as well as Geobacter sulphurreducens organisms, hybridized with a nifHDK probe from Rhodospirillum rubrum , indicating the presence of these nitrogenase structural genes in these organisms. The evidence presented here shows that members of the metal-metabolizing genera, Geobacter and Magnetospirillum , fix atmospheric dinitrogen.  相似文献   

10.
Abstract Samples of water, sediment and bacterial mat from hot springs in Grændalur and Hveragerdi areas in southwestern Iceland were screened at 70°C and 80°C for thermophilic denitrifying bacteria by culturing in anaerobic media containing nitrate or N2O as the terminal oxidant. The springs ranged in temperature from 65–100°C and included both neutral (pH 7–8.5) and acidic (pH 2.5–4) types. Nitrate reducing bacteria (nitrate → nitrite) and denitrifiers (nitrate → N2) were found that grew at 70°C but not at 80°C in nutrient media at pH 8. Samples from neutral springs that were cultured at pH 8 failed to yield a chemolithotrophic, sulfur-oxidizing and nitrate-reducing bacterium, and samples from acidic springs that were cultured at pH 3.5 seemed entirely to lack dissimilatory, nitrate-utilizing bacteria. No sample yielded an organism capable of growth solely by N2O respiration. The denitrifiers appeared to be Bacillus . Two such Bacillus strains were examined in pure culture and found to exhibit the unusual denitrification phenotype described previously for the mesophile, Pseudomonas aeruginosa , and one other strain of thermophilic Bacillus . The phenotype is characterized by the ability to grow by reduction of nitrate to N2 with N2O as an intermediate but a virtual inability to reduce N2O when N2O was the sole oxidant.  相似文献   

11.
Abstract Samples of water, sediment and bacterial mat from hot springs in Grændalur and Hveragerdi areas in southwestern Iceland were screened at 70°C and 80°C for thermophilic denitrifying bacteria by culturing in anaerobic media containing nitrate or N2O as the terminal oxidant. The s springs ranged in temperature from 65–100°C and included both neutral (pH 7–8.5) and acidic (pH 2.5–4) types. Nitrate reducing bacteria (nitrate → nitrite) and denitrifiers (nitrate → N2) were found that grew at 70°C but not at 80°C in nutrient media at pH 8. Samples from neutral springs that were cultured at pH 8 failed to yield a chemolithotrophic, sulfur-oxidizing and nitrate-reducing bacterium, and samples from acidic springs that were cultured at pH 3.5 seemed entirely to lack dissimilatory, nitrate-utilizing bacteria. No sample yielded an organism capable of growth solely by N2O respiration. The denitrifiers appeared to be Bacillus . Two such Bacillus strains were examined in pure culture and found to exhibit the unusual denitrification phenotype described previously for the mesophile, Pseudomonas aeruginosa , and one other strain of thermophilic Bacillus . The phenotype is characterized by the ability to grow by reduction of nitrate to N2 with N2O as an intermediate but a virtual inability to reduce N2O when N2O was the sole oxidant.  相似文献   

12.
Interactive effects of elevated atmospheric CO2 and arbuscular mycorrhizal (AM) fungi on biomass production and N2 fixation were investigated using black locust ( Robinia pseudoacacia ). Seedlings were grown in growth chambers maintained at either 350 μmol mol−1 or 710 μmol mol−1 CO2. Seedlings were inoculated with Rhizobium spp. and were grown with or without AM fungi. The 15N isotope dilution method was used to determine N source partitioning between N2 fixation and inorganic fertilizer uptake. Elevated atmospheric CO2 significantly increased the percentage of fine roots that were colonized by AM fungi. Mycorrhizal seedlings grown under elevated CO2 had the greatest overall plant biomass production, nodulation, N and P content, and root N absorption. Additionally, elevated CO2 levels enhanced nodule and root mass production, as well as N2 fixation rates, of non- mycorrhizal seedlings. However, the relative response of biomass production to CO2 enrichment was greater in non-mycorrhizal seedlings than in mycorrhizal seedlings. This study provides strong evidence that arbuscular mycorrhizal fungi play an important role in the extent to which plant nutrition of symbiotic N2-fixing tree species is affected by enriched atmospheric CO2.  相似文献   

13.
Abstract Sesbania rhizobium strain ORS571, which grows in the free-living state at the expense of N2 or ammonia, requires nicotinic acid as a growth factor and also uses this vitamin as a nitrogen source in culture medium devoid of ammonia. Consequently, under nitrogen-fixing conditions, Sesbania rhizobium requires about 10-times more nicotinic acid than when grown in the presence of ammonia. The physiological implications of this property are discussed.  相似文献   

14.
The nitrate reductase (NR, EC 1.6.6.1) activity in root nodules formed by hydrogenase positive (Hup+) and hydrogenase negative (Hup) Rhizobium leguminosarum strains was examined in symbioses with the pea cultivar Alaska ( Pisum sativum L.), Rates of activity were determined by the in vivo assay in nodules from plants that were only N2-dependent or grown in the presence of 2 m M KNO3. The rates varied widely among strains, regardless of the Hup phenotype of the R. leguminosarum strain used for inoculation, but the overall results indicated that nodules formed by Hup strains accumulated more nitrite in the incubation medium than did those with Hup phenotypes. Total plant dry weight and reduced nitrogen content of pea plants grown in the presence of 2 m M KNO3 and inoculated with single Hup+ and Hup R. leguminosarum strains were statistically different among some strains. These observations suggest that the possible advantages derived from the presence of the Hup system on whole plant growth may be counteracted by the higher rates of NR activity in the Hup strains in the R. leguminosarum -pea symbiosis.  相似文献   

15.
We examined the influence of temperature and management practices on the nitrogen (N) cycling of turfgrass, the largest irrigated crop in the United States. We measured nitrous oxide (N2O) fluxes, and plant and soil N content and isotopic composition with a manipulative experiment of temperature and fertilizer application. Infrared lamps were used to increase surface temperature by 3.5±1.3 °C on average and control and heated plots were split into high and low fertilizer treatments. The N2O fluxes increased following fertilizer application and were also directly related to soil moisture. There was a positive effect of warming on N2O fluxes. Soils in the heated plots were enriched in nitrogen isotope ratio ( δ 15N) relative to control plots, consistent with greater gaseous losses of N. For all treatments, C4 plant C/N ratio was negatively correlated with plant δ 15N, suggesting that low leaf N was associated with the use of isotopically depleted N sources such as mineralized organic matter. A significant and unexpected result was a large, rapid increase in the proportion of C4 plants in the heated plots relative to control plots, as measured by the carbon isotope ratio ( δ 13C) of total harvested aboveground biomass. The C4 plant biomass was dominated by crabgrass, a common weed in C3 fescue lawns. Our results suggest that an increase in temperature caused by climate change as well as the urban heat island effect may result in increases in N2O emissions from fertilized urban lawns. In addition, warming may exacerbate weed invasions, which may require more intensive management, e.g. herbicide application, to manage species composition.  相似文献   

16.
Abstract A gradostat (multistage chemostat) was used as a model of the rhizosphere. Investigations of the influence of NH4Cl and O2 gradients on a diazotrophic rhizosphere bacterium in pure culture and in mixed culture with non-diazotrophic strains were carried out. The diazotrophic isolate was able to grow on N2 and NH4Cl simultaneously. The diazotrophic isolate could successfully compete with the non-diazotrophic isolates in the presence and absence of NH4Cl in most experiments. Only minor amounts of nitrogen were transferred to the non-fixing organisms. A concept of transfer of nitrogen to non-fixing organisms is proposed.  相似文献   

17.
Abstract In the filamentous cyanobacterium Calothrix PCC 7504, which fixes N2 aerobically, the modification state of the regulatory PII protein (GlnB) was shown to depend on nitrogen and carbon availability, as observed in the unicellular non-fixing strain Synechococcus PCC 7942. However, the conditions for modifications, the time dependence of the process and the electrophoretic behavior of the native PII isoforms differed somewhat between the two strains. In another strain, Calothrix PCC 7601, which has lost the capability to fix N2, PII was modified only if ammonia plus an inhibitor of glutamine synthetase were present. It is proposed that: (i) the behavior of the PII proteins depends upon the physiological properties of the strains; and (ii) the modification system of PII per se may differ between the two cyanobacterial genera.  相似文献   

18.
The quantitative relationship between C2H2 reduction, H2 evolution and 15N2 fixation was investigated in excised root nodules from pea plants ( Pisum sativum L. cv. Bodil) grown under controlled conditions. The C2H2/N2 conversion factor varied from 3.31 to 5.12 between the 32nd and the 67th day after planting. After correction for H2 evolution in air, the factor (C2H2-H2)/N2 decreased to values near the theoretical value 3, or in one case to a value significantly ( P < 0.05) below 3. The proportion of the total electron flow through nitrogenase, which is not wasted in H2 production but used for N2 reduction, is often stated as the relative efficiency (1-H2/C2H2). This factor varied significantly ( P < 0.05) during the growth period. The actual allocation of electrons to H2 and N2, expressed as the H2/N2 ratio, was independent of plant age, however. This discrepancy and the observation that the (C2H2-H2)/N2 conversion factor tended to be lower than 3, suggests that the C2H2reduction assay underestimates the total electron flow through nitrogenase.  相似文献   

19.
Nitrate reductase (EC 1.6.6.1–3; NR) activity was evaluated in nodulated lucerne ( Medicago sativa L. cv. Europe) grown aeroponically in both the presence and absence of applied nitrogen. Determination of in vivo NR activity was done with organ pieces in 0.1 M K+-phosphate, pH 7.5, 0.1 M KNO3 and 1% n -propanol. NR activity was detected in all plant parts. Leaves accounted for 40% of the whole plant activity. Root activity was as high as leaf activity. Stem NR activity accounted for 14 to 20% of the total plant activity. NR activity was also detected in symbolically dependent plants grown without combined nitrogen. Nodule NR in symbolically dependent plants accounted for 17% of the tolal plant aclivity. When nitrate was present in the nulrienl medium, NR increased 5-fold as compared lo N2-dependenl plants. Varying levels of nitrale (1.65 to 4 m M ) had no influence on leaf or stem activities. However, root NR activity seemed to be related to the nitrale concentration in the nulrient medium. Throughoul inilial vegelative growth, in vivo NR and nitrogenase (acelylene reduction) increased simultaneously. After shoot harvest, nitrogenase (acetylene reduction) aclivity drastically decreased with reduction of photosynthate supply, whereas NR increased in all organs, especially in N2-dependenl plants.  相似文献   

20.
Abstract A denitrifying Cytophaga was isolated from soil enriched by anaerobic incubation with glucose, sulfide (S2−), nitrous oxide (N2O), and acetylene (C2H2). Such soil enrichments and pure cultures of the isolated Cytophaga reduced N2O rapidly even in the presence of a normally inhibitory concentration of C2H2 (4 kPa) providing S2− was present (8 μmol/g soil or 0.4 μmol/ml culture). Since C2H2 inhibition of the reduction of N2O is used as a tool in the assay of denitrification, the presence in large numbers of such a Cytophaga may influence the effectiveness of this assay especially in sulfidic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号