首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 1B receptor subtype in mediating the effects of selective serotonin re-uptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg, but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiated the effect of a single administration of paroxetine on extracellular 5-HT levels more in the ventral hippocampus than in the frontal cortex. These data suggest that 5-HT1B autoreceptors limit the effects of SSRIs on dialysate 5-HT levels at serotonergic nerve terminals.  相似文献   

2.
An increase in central postsynaptic 5-hydroxytryptamine (5-HT) function activates expression of activity-related cytoskeletal protein (Arc). Here, Arc expression was used to test whether, in rats, co-administration of a 5-HT re-uptake inhibitor (paroxetine) and a 5-HT1A receptor antagonist (WAY 100635) increases postsynaptic 5-HT function. After pre-treatment with WAY 100635 (0.3 mg/kg s.c.), paroxetine (5 mg/kg s.c.) caused a threefold increase in 5-HT in prefrontal cortex microdialysates. In situ hybridization studies found that neither paroxetine (5 mg/kg s.c.) nor WAY 1000635 (0.3 mg/kg s.c.) altered Arc mRNA abundance in any region examined. In contrast, paroxetine (5 mg/kg s.c.) increased Arc mRNA after pre-treatment with WAY 100635 (0.3 mg/kg s.c.). This increase was apparent in cortical regions (frontal, parietal and cingulate) and caudate nucleus but was absent in hippocampus (CA1). Increases in Arc mRNA were accompanied by an increase in c-fos mRNA. The increase in Arc expression induced by paroxetine/WAY 100635 was abolished by the 5-HT synthesis inhibitor, p-chlorophenylalanine (300 mg/kg i.p., daily for two days). In conclusion, paroxetine and WAY 100635 injected in combination (but not alone) caused a region-specific, 5-HT-mediated increase in Arc expression. These data provide molecular evidence that co-administration of a 5-HT re-uptake inhibitor and 5-HT1A receptor antagonist increases 5-HT function at the postsynaptic level.  相似文献   

3.
In the dorsal raphe nucleus (DR), extracellular serotonin (5-HT) regulates serotonergic transmission through 5-HT1A autoreceptors. In this work we used in vivo microdialysis to examine the effects of stressful and pharmacological challenges on DR 5-HT efflux in 5-HT1A receptor knockout (5-HT1A-/-) mice and their wild-type counterparts (5-HT1A+/+). Baseline 5-HT concentrations did not differ between both lines of mice, which is consistent with a lack of tonic control of 5-HT1A autoreceptors on DR 5-HT release. (R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT, 0.5 mg/kg) reduced 5-HT levels to 30% of basal values in 5-HT1A+/+ mice, but not in 5-HT1A-/- mice. The selective 5-HT1B receptor agonist 1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl)-5H-pyrrolo[3,2-b]pyridin-5-one dihydrochloride (CP 93129, 300 micro m) reduced dialysate 5-HT to the same extent (30-40% of baseline) in the two genotypes, which suggests a lack of compensatory changes in 5-HT1B receptors in the DR of such mutant mice. Both a saline injection and handling for 3 min increased DR dialysate 5-HT in mutants, but not in 5-HT1A+/+ mice. Fluoxetine (5 and 20 mg/kg) elevated 5-HT in a dose-dependent manner in both genotypes. However, this effect was markedly more pronounced in the 5-HT1A-/- mice. The increased responsiveness of the extracellular 5-HT in the DR of 5-HT1A receptor knockout mice reflects a lack of the autoinhibitory control exerted by 5-HT1A autoreceptors.  相似文献   

4.
Measurements of serotonin (5-HT), dopamine (DA), and noradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16 brain regions and the spinal cord of 5-HT(1A) or 5-HT(1B) knockout and wild-type mice of the 129/Sv strain. In 5-HT(1A) knockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HT metabolites were higher than those of the wild type in dorsal/medial raphe nuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was taken as an indication of increased 5-HT turnover, reflecting an augmented basal activity of midbrain raphe neurons and consequent increase in their somatodendritic and axon terminal release of 5-HT. It provided a likely explanation for the increased anxious-like behavior observed in 5-HT(1A) knockout mice. Concomitant increases in DA content and/or DA turnover were interpreted as the result of a disinhibition of DA, whereas increases in noradrenaline concentration in some territories of projection of the locus coeruleus could reflect a diminished activity of its neurons. In 5-HT(1B) knockouts, 5-HT concentrations were lower than those of the wild type in nucleus accumbens, locus coeruleus, spinal cord, and probably also several other territories of 5-HT innervation. A decrease in DA, associated with increased DA turnover, was measured in nucleus accumbens. These changes in 5-HT and DA metabolism were consistent with the increased aggressiveness and the supersensitivity to cocaine reported in 5-HT(1B) knockout mice. Thus, markedly different alterations in CNS monoamine metabolism may contribute to the opposite behavioral phenotypes of these two knockouts.  相似文献   

5.
5-HT1A knockout (KO) mice display an anxious-like phenotype, whereas 5-HT1B KOs are over-aggressive. To identify serotoninergic correlates of these altered behaviors, autoradiographic measurements of 5-HT1A and 5-HT1B serotonin (5-HT) receptors and transporter (5-HTT) were obtained using the radioligands [3H]8-OH-DPAT, [125I]cyanopindolol and [3H]citalopram, respectively. By comparison to wild-type, density of 5-HT1B receptors was unchanged throughout brain in 5-HT1A KOs, and that of 5-HT1A receptors in 5-HT1B KOs. In contrast, decreases in density of 5-HTT binding were measured in several brain regions of both genotypes. Moreover, 5-HTT binding density was significantly increased in the amygdalo-hippocampal nucleus and ventral hippocampus of the 5-HT1B KOs. Measurements of 5-HT axon length and number of axon varicosities by quantitative 5-HT immunocytochemistry revealed proportional increases in the density of 5-HT innervation in these two regions of 5-HT1B KOs, whereas none of the decreases in 5-HTT binding sites were associated with any such changes. Several conclusions could be drawn from these results: (i) 5-HT1B receptors do not adapt in 5-HT1A KOs, nor do 5-HT1A receptors in 5-HT1B KOs. (ii) 5-HTT is down-regulated in several brain regions of 5-HT1A and 5-HT1B KO mice. (iii) This down-regulation could contribute to the anxious-like phenotype of the 5-HT1A KOs, by reducing 5-HT clearance in several territories of 5-HT innervation. (iv) The 5-HT hyperinnervation in the amygdalo-hippocampal nucleus and ventral hippocampus of 5-HT1B KOs could play a role in their increased aggressiveness, and might also explain their better performance in some cognitive tests. (v) These increases in density of 5-HT innervation provide the first evidence for a negative control of 5-HT neuron growth mediated by 5-HT1B receptors.  相似文献   

6.
The most consistent neurochemical finding in autism has been elevated group mean levels of blood platelet 5-hydroxytryptamine (5-HT, serotonin). The origin and significance of this platelet hyperserotonemia remain poorly understood. The 5-HT(1A) receptor plays important roles in the developing brain and is also expressed in the gut, the main source of platelet 5-HT. Post-natal tissue levels of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA) and tryptophan were examined in the brain, duodenum and blood of 5-HT(1A) receptor-knockout and wild-type mice. At 3 days after birth, the knockout mice had lower mean brain 5-HT levels and normal mean platelet 5-HT levels. Also, at 3 days after birth, the mean tryptophan levels in the brain, duodenum and blood of the knockout mice were around 30% lower than those of the wild-type mice. By 2 weeks after birth, the mean brain 5-HT levels of the knockout mice normalized, but their mean platelet 5-HT levels became 24% higher than normal. The possible causes of these dynamic shifts were explored by examining correlations between central and peripheral levels of 5-HT, 5-HIAA and tryptophan. The results are discussed in relation to the possible role of 5-HT in the ontogeny of autism.  相似文献   

7.
8.
The 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) is important in terminating serotonergic neurotransmission and is a primary target for many psychotherapeutic drugs. Study of the regulation of 5-HTT activity is therefore important in understanding the control of serotonergic neurotransmission. Using high-speed chronoamperometry, we have demonstrated that local application of 5-HT(1B) antagonists into the CA3 region of the hippocampus prolongs the clearance of 5-HT from extracellular fluid (ECF). In the present study, we demonstrate that the 5-HT(1B) antagonist cyanopindolol does not produce this effect by increasing release of endogenous 5-HT or by directly binding to the 5-HTT. Dose-response studies showed that the potency of cyanopindolol to inhibit clearance of 5-HT was equivalent to that of the selective 5-HT reuptake inhibitor fluvoxamine. Local application of the 5-HT(1A) antagonist WAY 100635 did not alter 5-HT clearance, suggesting that the effect of cyanopindolol to prolong clearance is not via a mechanism involving 5-HT(1A) receptors. Finally, the effect of low doses of cyanopindolol and fluvoxamine to inhibit clearance of 5-HT from ECF was additive. These data are consistent with the hypothesis that activation of terminal 5-HT(1B) autoreceptors increases 5-HTT activity.  相似文献   

9.
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.  相似文献   

10.
Alterations in 5‐HT1B receptor function during cocaine abstinence were evaluated in rats given either limited‐ or extended access (LA and EA, respectively) to cocaine self‐administration. The locomotor response to the 5‐HT1B/1A agonist RU24969 was significantly reduced in cocaine‐experienced animals relative to cocaine‐naïve controls following 6 h of abstinence but became sensitized over the subsequent 14 days of abstinence. Both the early phase subsensitivity and later phase supersensivity to RU 24969‐induced activity were greater in EA versus LA animals. Intra‐nucleus accumbens administration of the 5‐HT1B agonist CP 93, 129 produced significantly greater increases in dialysate dopamine levels in EA versus control animals following 14 days of abstinence. However, there was no difference between EA and cocaine‐naïve control animals in the augmentation of cocaine‐induced increases in nucleus accumbens DA produced by intra‐VTA CP 93, 129. Collectively these findings demonstrate that 5‐HT1B receptor function is persistently altered by cocaine self‐administration.  相似文献   

11.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

12.
Clearance rates for serotonin (5-HT) in heterozygote (+/-) and homozygote (-/-) serotonin transporter (5-HTT) knockout (KO) mice have not been determined in vivo. Moreover, the effect of selective serotonin reuptake inhibitors (SSRIs) on 5-HT clearance in these mice has not been examined. In this study, the rate of clearance of exogenously applied 5-HT was measured in the CA3 region of the hippocampus of anesthetized mice using high-speed chronoamperometry. Compared with wild-type mice, the maximal rate of 5-HT clearance from extracellular fluid (ECF) was decreased in heterozygotes and more markedly so in KO mice. Heterozygote mice were more sensitive to the 5-HT uptake inhibitor, fluvoxamine, resulting in longer clearance times for 5-HT than in wild-type mice; as expected, the KO mice were completely unresponsive to fluvoxamine. There were no associated changes in norepinephrine transporter density, nor was there an effect of the norepinephrine uptake inhibitor, desipramine, on 5-HT clearance in any genotype. Thus, adaptive changes in the norepinephrine transport system do not occur in the CA3 region of hippocampus as a consequence of 5-HTT KO. These data highlight the potential of the heterozygote 5-HTT mutant mice to model the dynamic in vivo consequences of the human 5-HTT polymorphism.  相似文献   

13.
The morphological changes in the development of serotonergic neurons of the dorsal raphe nuclei in the medulla oblongata was studied by immunocytochemistry in mice with knockout of 1A and 1B serotonin autoreceptors as well as monoamine oxidase A. Serotonin autoreceptors regulate electric activity of serotonergic neurons as well as the synthesis and release of the neurotransmitter, while monoamine oxidase A catalyzes its degradation. These genetic modifications proved to have no effect on the number of serotonergic neurons in the medulla oblongata but induced morphofunctional changes. Decreased cell size and increased intracellular serotonin level were observed in the case of monoamine oxidase A deficiency, while excessive cell size and decreased intracellular serotonin level were observed in the case of autoreceptor deficiency. The data obtained confirm the hypothesis of autoregulation of serotonergic neurons in development.  相似文献   

14.
Catalepsy (pronounced motor inhibition) is a natural defensive reaction against predator. Recently, the quantitative trait locus for catalepsy was mapped on mouse chromosome 13 near the 5-HT(1A) serotonin receptor gene. Here, the linkage between catalepsy and the 5-HT(1A) receptor gene was verified using breeding experiment. Selective breeding for high predisposition to catalepsy was started from backcross BC[CBA x (CBA x AKR)] generation between catalepsy-prone (CBA) and catalepsy-resistant (AKR) mouse strains. CBA and AKR strains also differed in the 5-HT(1A) receptor functional activity. A rapid increase of cataleptic percentage from 21.2% in the backcrosses to 71% in the third generation of selective breeding (S3) was shown. The fragment of chromosome 13 including the 5-HT(1A) receptor gene was marked with D13Mit76 microsatellite. Breeding for catalepsy increased the concentration of CBA-derived and decreased the concentration of AKR-derived alleles of microsatellite D13Mit76 in the S1 and S2. All mice of the S9 and S12 were homozygous for CBA-derived allele of D13Mit76 marker. Mice of the S12 showed CBA-like receptor activity. These findings indicate that selective breeding for behavior can involve selection of polymorphic variants of the 5-HT(1A) receptor gene.  相似文献   

15.
The aim of this study was to investigate if p-chloroamphetamine (PCA), which is neurotoxic to serotonin (5-HT) nerve terminals, was able to induce, like 3,4-methylenedioxymethamphetamine, a region-specific regulation of 5-HT1A receptor mRNA expression. The effect of PCA on the expression of 5-HT7 receptors, which share some pharmacological properties with 5-HT1A receptors, was comparatively studied. PCA (2 x 5 mg/kg) produced a lasting depletion of 5-HT content in the rat frontal cortex and hippocampus. In the hippocampus, the maximal 5-HT depletion was found on day 21 (-70%), whereas in the cortex, the highest 5-HT depletion was found on day 14 (-73%), with a partial but significant recovery on day 21. At the latter time point, 5-HT1A receptor mRNA expression was increased by 80% in the cortex and decreased by 50% in the hippocampus. The 5-HT1A receptor mRNA expression was also enhanced after exposure to PCA of rat cortical but not of hippocampal primary cultures. In regard to 5-HT7 receptor mRNA expression, the most remarkable change after PCA was the great increase (+200%) in the brain-stem. Binding studies to 5-HT1A receptors matched the changes in receptor mRNA expression. Gel shift assays revealed enhanced nuclear protein binding to the KB sequence with use of cortical but not hippocampal extracts of PCA-treated rats. Overall, the data show region-specific changes in 5-HT receptor-type expression that may not be entirely dependent on the neurotoxic effect of PCA on 5-HT terminals.  相似文献   

16.
Mice lacking the serotonin receptor 1A (Htr1a knockout, Htr1a KO ) show increased innate and conditioned anxiety. This phenotype depends on functional receptor activity during the third through fifth weeks of life and thus appears to be the result of long-term changes in brain function as a consequence of an early deficit in serotonin signaling. To evaluate whether this phenotype can be influenced by early environmental factors, we subjected Htr1a knockout mice to postnatal handling, a procedure known to reduce anxiety-like behavior and stress responses in adulthood. Offspring of heterozygous Htr1a knockout mice were separated from their mother and exposed 15 min each day from postnatal day 1 (PD1) to PD14 to clean bedding. Control animals were left undisturbed. Maternal behavior was observed during the first 13 days of life. Adult male offspring were tested in the open field, social approach and resident–intruder tests and assessed for corticosterone response to restraint stress. Knockout mice showed increased anxiety in the open field and in the social approach test as well as an enhanced corticosterone response to stress. However, while no effect of postnatal handling was seen in wild-type mice, handling reduced anxiety-like behavior in the social interaction test and the corticosterone response to stress in knockout mice. These findings extend the anxiety phenotype of Htr1a KO mice to include social anxiety and demonstrate that this phenotype can be moderated by early environmental factors.  相似文献   

17.
Disturbances in serotonergic neurotransmission have been suggested to be closely interlinked with hyperactivity of the hypothalamic-pituitary-adrenocortical (HPA) system, and are likely to be involved in the pathophysiology of anxiety disorders and major depression. We therefore investigated markers of serotonergic transmission and their modulation by chronic paroxetine in rats selectively bred for high (HAB) or low (LAB) anxiety-related behaviour, both under basal conditions and in response to emotional stress. Hippocampal serotonin 1 A (5-HT1A) receptor mRNA expression was reduced in HAB rats, whereas 5-HT concentrations in hippocampal microdialysates did not differ between HAB and LAB rats under basal conditions. In the hippocampus, overall expression of serotonin transporter binding sites was increased in HAB compared with LAB rats. Exposure to emotional stress failed to increase intrahippocampal 5-HT release in HAB rats whereas LAB rats displayed a physiological, albeit small rise. Chronic paroxetine treatment markedly increased the stress-induced rise in hippocampal 5-HT in HAB, but not LAB rats. This effect may be (at least in part) related to a greater down-regulation of hippocampal serotonin transporter binding sites by paroxetine in HABs compared with LABs, while 5-HT1A receptor expression remained unaffected in this brain area. The findings indicate reduced hippocampal serotonergic transmission in HAB rats as compared with LAB rats, which is evident both at the presynaptic (5-HT release) and the postsynaptic (5-HT1A receptor) level. Chronic paroxetine enhanced the presynaptic responsivity in HAB rats, but not LAB rats, pointing to a preferential efficacy of paroxetine in rats with enhanced anxiety/depression-related behaviour.  相似文献   

18.
Serotonin (5-HT)1A receptors modulate in vivo release of brain monoaminergic neurotransmitters which may be involved in isolation-induced aggressive behavior. The present study examined the effect of isolation rearing on the 5-HT1A receptor-mediated modulation of dopamine (DA), 5-HT and noradrenaline (NA) release in the frontal cortex of mice. The selective 5-HT1A receptor agonist (S)-5-[-[(1,4-benzodioxan-2-ylmethyl)amino]propoxy]-1,3-benzodioxole HCl (MKC-242) increased the release of DA and NA and decreased the release of 5-HT in the frontal cortex of mice. The effect of MKC-242 on DA release was significantly less in isolation-reared mice than in group-reared mice, while effects of the drug on NA and 5-HT release did not differ between both groups. The effect of the other 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin on cortical DA release was also less in isolation-reared mice than in group-reared mice, and that of the drug on cortical 5-HT release did not differ between both groups. In contrast to MKC-242-induced DA release, amphetamine-induced increase in cortical DA release in vivo was greater in isolation-reared mice. The present findings suggest that isolation rearing enhances the activity of cortical dopaminergic neurons and reduces selectively the 5-HT1A receptor-mediated release of DA in the cortex.  相似文献   

19.
5-HT1A receptors are involved in the regulation of various behaviors and the mechanism of action of anxiolytics and antidepressants. It is rather difficult to study the expression of the 5-HT1A receptor gene in the brain because of the low concentration of its mRNA. A method developed for quantitating the level of 5-HT1A receptor gene expression in brain structures involves estimation of the copy number for contaminant genomic DNA, the cDNA of the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene (a housekeeping gene), and the 5-HT1A receptor gene cDNA in a cDNA preparation. To estimate the GAPDH and 5-HT1A receptor cDNA copy numbers, the fluorescent intensity of the corresponding PCR products is calibrated using genomic DNA standards of known concentrations. The expression of the 5-HT1A receptor gene is corrected for the content of contaminant genomic DNA and presented as a 5-HT1A receptor cDNA copy number per 100 copies of the GAPDH cDNA. The method was used to demonstrate for the first time that expression of the 5-HT1A receptor gene is increased in the frontal cortex and the amygdala of mice knocked-out in the monoamine oxidase A gene.  相似文献   

20.
A transgenic mouse model, deficient in kinin B1 receptor (B1−/−) was used to evaluate the role of B2 receptor in the smooth muscle stomach fundus. The results showed that the potency of bradykinin (BK) to induce contraction in the gastric tissue was maintained whereas the efficacy was markedly reduced. The angiotensin converting enzyme (ACE) inhibitor captopril potentiated BK-induced effect in wild type (WT) but not in B1−/− fundus. However, ACE activity detected by the convertion of Ang I to Ang II was inhibited by captopril in both types of gastric tissues. Taking into account the hypothesis that captopril and ACE bind to the B2 receptor, we suggest that this complex was not formed in the stomach deficient in B1 receptor. Therefore, our finding strongly support the hypothesis that in smooth muscles that constitutively express the kinin B1 and B2 receptors, an interaction between captopril and ACE, B1 and B2 receptors should occur forming a complex protein interaction for the potentiating effect of ACE on kinin receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号