首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

2.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 1B receptor subtype in mediating the effects of selective serotonin re-uptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg, but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiated the effect of a single administration of paroxetine on extracellular 5-HT levels more in the ventral hippocampus than in the frontal cortex. These data suggest that 5-HT1B autoreceptors limit the effects of SSRIs on dialysate 5-HT levels at serotonergic nerve terminals.  相似文献   

3.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

4.
We use the knockout mice strategy to investigate the contribution of the 5-HT1B receptor in mediating the effects of selective serotonin reuptake inhibitors (SSRI). Using microdialysis in awake 129/Sv mice, we show that the absence of the 5-HT1B receptor in mutant mice (KO 1B -/-) potentiated the effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, but not in the frontal cortex compared to wild-type mice (WT). Furthermore, using the forced swimming test, we demonstrate that SSRIs decreased immobility of WT mice, and this effect is absent in KO 1B -/- mice showing therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these findings suggest that 5-HT1B autoreceptors limit the effects of SSRI particularly in the hippocampus while postsynaptic 5-HT1B receptors are required for the antidepressant activity of SSRIs.  相似文献   

5.
Mutant mice that lack serotonin(1A) receptors exhibit enhanced anxiety-related behaviors, a phenotype that is hypothesized to result from impaired autoinhibitory control of midbrain serotonergic neuronal firing. Here we examined the impact of serotonin(1A) receptor deletion on forebrain serotonin neurotransmission using in vivo microdialysis in the frontal cortex and ventral hippocampus of serotonin(1A) receptor mutant and wild-type mice. Baseline dialysate serotonin levels were significantly elevated in mutant animals as compared with wild-types both in frontal cortex (mutant = 0.44 +/- 0.05 n M; wild-type = 0.28 +/- 0.03 n M) and hippocampus (mutant = 0.46 +/- 0.07 n M; wild-type = 0.27 +/- 0.04 n M). A stressor known to elicit enhanced anxiety-like behaviors in serotonin(1A) receptor mutants increased dialysate 5-HT levels in the frontal cortex of mutant mice by 144% while producing no alteration in cortical 5-HT in wild-type mice. There was no phenotypic difference in the effect of this stressor on serotonin levels in the hippocampus. Fluoxetine produced significantly greater increases in dialysate 5-HT content in serotonin(1A) receptor mutants as compared with wild-types, with two- and three-fold greater responses being observed in the hippocampus and frontal cortex, respectively. This phenotypic effect was mimicked in wild-types by pretreatment with the serotonin(1A) antagonist 4-iodo-N-[2-[4-(methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinyl-benzamide (p-MPPI). These results indicate that deletion of central serotonin(1A) receptors results in a tonic disinhibition of central serotonin neurotransmission, with a greater dysregulation of serotonin release in the frontal cortex than ventral hippocampus under conditions of stress or increased interstitial serotonin levels.  相似文献   

6.
The 5-hydroxytryptamine (5-HT4) receptor may be implicated in depression and is a new potential target for antidepressant treatment. We have investigated the brain 5-HT4 receptor [3H]SB207145 binding in the Flinders Sensitive Line rat depression model by quantitative receptor autoradiography, and related this to 5-HT transporter ( S )-[ N -methyl-3H]citalopram binding. We also determined the regulation of 5-HT4 receptor binding by 1, 14, and 21 days of paroxetine administration and subchronic 5-HT depletion, and compared this with changes in 5-HT2A receptor [3H]MDL100907 binding. In the Flinders Sensitive Line, the 5-HT4 receptor and 5-HT transporter binding were decreased in the dorsal and ventral hippocampus, and the changes in binding were directly correlated within the dorsal hippocampus. Chronic but not acute paroxetine administration caused a 16–47% down-regulation of 5-HT4 receptor binding in all regions evaluated including the basal ganglia and hippocampus, while 5-HT depletion increased the 5-HT4 receptor binding in the dorsal hippocampus, hypothalamus, and lateral globus pallidus. In comparison, the 5-HT2A receptor binding was decreased in the frontal and cingulate cortices after chronic paroxetine administration, and markedly reduced in several regions after 5-HT depletion. Thus, the 5-HT4 receptor binding was decreased in the Flinders Sensitive Line depression model and in response to chronic paroxetine administration.  相似文献   

7.
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behaviour and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB1 cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB1 knockout compared with wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB1 knockout mice. The lack of CB1 receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus (DRN) revealed that the genetic and pharmacological blockade of CB1 receptor induced a 5-HT1A autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT2C receptor within several brain areas related to the control of the emotional responses, such as the DRN, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an over-expression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB1 receptor induces a facilitation of the activity of serotonergic neurons in the DRN by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.  相似文献   

8.
Abstract: To assess the involvement of the serotonin receptor subtype 5-HT1B as terminal autoreceptor regulating 5-HT release in mice, we compared basal values and potassium-evoked changes of extracellular 5-HT levels obtained by in vivo microdialysis in two serotoninergic terminal projection areas of conscious wild-type mice with those measured in homozygous mutant mice lacking the gene encoding the 5-HT1B receptor. In the frontal cortex and ventral hippocampus, basal and K+-evoked 5-HT release did not differ between the two strains of mice studied. The infusion via reverse microdialysis of the selective 5-HT1B receptor agonist CP-93,129 (500 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −44%) and ventral hippocampus (by −32%) of wild-type mice but had no effect in mutants. In a similar manner, the mixed 5-HT1B-5-HT1D receptor agonist sumatriptan (800 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −46%) of wild-type mice but had no effect in mutants. These results demonstrated that 5-HT1B knockout mice are not as sensitive to full (CP-93,129) and mixed (sumatriptan) 5-HT1B receptor agonists as are wild-type mice. These data provide in vivo evidence that, in mice, 5-HT1B, but not 5-HT1D, autoreceptors inhibit 5-HT release at nerve terminals located in the frontal cortex and ventral hippocampus.  相似文献   

9.
Heterozygous brain-derived neurotrophic factor (BDNF) (+/-) mice display abnormalities in central serotonergic neurotransmission, develop decrements in serotonergic innervation of the forebrain, and exhibit enhanced intermale aggressiveness. As disturbances of serotonin neurotransmission are implicated in alcohol abuse and aggression, we have examined in BDNF (+/-) mice alcohol drinking behavior, as well as central 5-hydroxytryptamine (5-HT)1A receptor function at the level of 5-HT1A receptor-G protein interaction. BDNF (+/-) mice displayed increased ethanol intake in a two-bottle choice procedure. There was no difference in the preference ratio for non-alcoholic tastants (i.e. quinine or saccharin) between genotypes. In the brains of alcohol-naive mice, we measured [35S]GTP gamma S binding stimulated by the 5-HT1A receptor agonist (+/-)-8-hydroxy-2-dipropyl-aminotetralin hydrobromide (8-OH-DPAT; 1 microM). In BDNF (+/-) versus wild-type (WT) mice, 5-HT1A receptor-stimulated [35S]GTP gamma S binding was significantly attenuated in the median raphe nucleus. There was a decrease in (+/-)8-OH-DPAT-stimulated [35S]GTP gamma S binding in the dorsal raphe, which did not reach statistical significance. In the hippocampus, 5-HT1A receptor-stimulated [35S]GTP gamma S binding was significantly attenuated in BDNF (+/-) mice. 5-HT1A receptor-stimulated [35S]GTP gamma S binding was attenuated in the anterior cingulate cortex and lateral septum, although these reductions did not reach statistical significance. 5-HT1A receptor number was not different between genotypes in any area of brain examined, suggesting that 5-HT1A receptor function, specifically the capacity of the 5-HT1A receptor to activate G proteins, is attenuated in BDNF (+/-) mice.  相似文献   

10.
It has been proposed that the desensitization of 5-HT1A (5-hydroxytryptamine; serotonin) receptors following chronic therapy with selective serotonin reuptake inhibitors (SSRIs) is necessary for their therapeutic efficacy. Stimulation of the 5-HT1A receptors decreases serotonin (5-HT) synthesis and release, but it is not clear if the receptors are fully desensitized following chronic SSRI treatment. The main objective of this study was evaluation of ability of 5-HT1A receptors to modulate 5-HT synthesis after 14-day paroxetine treatment. 5-HT1A receptor sensitivity following chronic administration of the SSRI paroxetine was assessed by the ability of an acute challenge with the 5-HT1A agonist, flesinoxan, to modulate 5-HT synthesis in the rat brain. The rates of 5-HT synthesis were measured using the α-[14C]methyl-l-tryptophan autoradiographic method. The rats were treated for 2 weeks with paroxetine (10 mg/(kg day), s.c., delivered by osmotic minipump). After this treatment, the rats received an acute challenge with flesinoxan (5 mg/kg, i.p.), while the control rats were injected with the vehicle. Forty minutes following the flesinoxan injection, the tracer, α-[14C]methyl-l-tryptophan, was injected over 2 min. 5-HT synthesis rates were calculated from autoradiographically measured tissue tracer concentrations and plasma time–activity curves. The results demonstrated that the acute flesinoxan challenge produced a significant decrease in 5-HT synthesis rates throughout the rat brain. The greatest decrease was observed in the ventral hippocampus, somatosensory cortex and the ascending serotonergic cell bodies. In comparison with data reported on an acute challenge with flesinoxan in naïve rats (rats without any other treatment), the results presented here suggest a greater effect of flesinoxan on synthesis reduction in rats chronically treated with paroxetine. The results also suggest that the 5-HT receptors were not fully desensitized by paroxetine treatment, and that the stimulation of 5-HT1A receptors with an agonist is still capable of reducing 5-HT synthesis.  相似文献   

11.
It has been proposed that the desensitization of 5-HT1A (5-hydroxytryptamine; serotonin) receptors following chronic therapy with selective serotonin reuptake inhibitors (SSRIs) is necessary for their therapeutic efficacy. Stimulation of the 5-HT1A receptors decreases serotonin (5-HT) synthesis and release, but it is not clear if the receptors are fully desensitized following chronic SSRI treatment. The main objective of this study was evaluation of ability of 5-HT1A receptors to modulate 5-HT synthesis after 14-day paroxetine treatment. 5-HT1A receptor sensitivity following chronic administration of the SSRI paroxetine was assessed by the ability of an acute challenge with the 5-HT1A agonist, flesinoxan, to modulate 5-HT synthesis in the rat brain. The rates of 5-HT synthesis were measured using the α-[14C]methyl-l-tryptophan autoradiographic method. The rats were treated for 2 weeks with paroxetine (10 mg/(kg day), s.c., delivered by osmotic minipump). After this treatment, the rats received an acute challenge with flesinoxan (5 mg/kg, i.p.), while the control rats were injected with the vehicle. Forty minutes following the flesinoxan injection, the tracer, α-[14C]methyl-l-tryptophan, was injected over 2 min. 5-HT synthesis rates were calculated from autoradiographically measured tissue tracer concentrations and plasma time–activity curves. The results demonstrated that the acute flesinoxan challenge produced a significant decrease in 5-HT synthesis rates throughout the rat brain. The greatest decrease was observed in the ventral hippocampus, somatosensory cortex and the ascending serotonergic cell bodies. In comparison with data reported on an acute challenge with flesinoxan in naïve rats (rats without any other treatment), the results presented here suggest a greater effect of flesinoxan on synthesis reduction in rats chronically treated with paroxetine. The results also suggest that the 5-HT receptors were not fully desensitized by paroxetine treatment, and that the stimulation of 5-HT1A receptors with an agonist is still capable of reducing 5-HT synthesis.  相似文献   

12.
5-HT1A knockout (KO) mice display an anxious-like phenotype, whereas 5-HT1B KOs are over-aggressive. To identify serotoninergic correlates of these altered behaviors, autoradiographic measurements of 5-HT1A and 5-HT1B serotonin (5-HT) receptors and transporter (5-HTT) were obtained using the radioligands [3H]8-OH-DPAT, [125I]cyanopindolol and [3H]citalopram, respectively. By comparison to wild-type, density of 5-HT1B receptors was unchanged throughout brain in 5-HT1A KOs, and that of 5-HT1A receptors in 5-HT1B KOs. In contrast, decreases in density of 5-HTT binding were measured in several brain regions of both genotypes. Moreover, 5-HTT binding density was significantly increased in the amygdalo-hippocampal nucleus and ventral hippocampus of the 5-HT1B KOs. Measurements of 5-HT axon length and number of axon varicosities by quantitative 5-HT immunocytochemistry revealed proportional increases in the density of 5-HT innervation in these two regions of 5-HT1B KOs, whereas none of the decreases in 5-HTT binding sites were associated with any such changes. Several conclusions could be drawn from these results: (i) 5-HT1B receptors do not adapt in 5-HT1A KOs, nor do 5-HT1A receptors in 5-HT1B KOs. (ii) 5-HTT is down-regulated in several brain regions of 5-HT1A and 5-HT1B KO mice. (iii) This down-regulation could contribute to the anxious-like phenotype of the 5-HT1A KOs, by reducing 5-HT clearance in several territories of 5-HT innervation. (iv) The 5-HT hyperinnervation in the amygdalo-hippocampal nucleus and ventral hippocampus of 5-HT1B KOs could play a role in their increased aggressiveness, and might also explain their better performance in some cognitive tests. (v) These increases in density of 5-HT innervation provide the first evidence for a negative control of 5-HT neuron growth mediated by 5-HT1B receptors.  相似文献   

13.
This study reports the effect of chronic paroxetine (10 mg/kg p.o., 21 days) on 5-HT1B and 5-HT1D autoreceptors controlling stimulated 5-HT efflux in slices of rat dorsal raphe nucleus. Electrically evoked 5-HT (10 pulses, 200 Hz, 0.1 ms, 10 mA) was measured using fast cyclic voltammetry. 5-HT efflux was inhibited by CP 93129 (10 nM-10 microM) and by sumatriptan (1 nM-1 microM) agonists at 5-HT1B and 5-HT1D receptors, respectively. Chronic paroxetine did not, initially, appear to alter the sensitivity of the 5-HT1B autoreceptors to CP 93129. However, when constructed in the presence of WAY 100635 (10 nM) the selective and silent 5-HT1A antagonist, there was a significant (P < 0.001) rightward shift of the CP 93129 concentration-response curve in the paroxetine-treated rats but not in the controls, implying a desensitisation of the 5-HT1B autoreceptor by paroxetine. Chronic paroxetine did not affect the sumatriptan concentration-response curve, even with WAY 100635 present, implying that there was no (de)sensitisation of the 5-HT1D autoreceptor. These data suggest that chronic paroxetine treatment may desensitise 5-HT1B autoreceptors in the dorsal raphe nucleus but that this effect is unmasked only when the dominant 5-HT1A autoreceptor control is antagonised.  相似文献   

14.
The agents p-chlorophenylalanine (PCPA) and p-chloroamphetamine (PCA) deplete brain serotonin (5-HT) levels by two different mechanisms; PCPA inhibits the enzyme tryptophan hydroxylase, whereas PCA has a neurotoxic action on certain 5-HT neurons. The parameters of [3H]paroxetine binding to homogenates prepared from the cerebral cortex of rats treated with PCPA, PCA, or saline; vehicle were investigated. The tissue concentrations of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were also determined by HPLC in the same brain samples. After PCPA treatment, neither the maximum binding capacity (Bmax) nor the dissociation constant (KD) of [3H]paroxetine for the 5-HT uptake recognition site differed from controls despite a substantial reduction in the concentration of 5-HT and 5-HIAA. In contrast, significant changes in both the Bmax and KD values were observed in the cerebral cortex of rats treated with PCA. Furthermore, [3H]paroxetine binding and tissue concentrations of 5-HT and 5-HIAA were measured in the following different regions of the rat brain: cingulate, parietal, and visual cortical areas; dorsal and ventral hippocampus; rostral and caudal halves of neostriatum; ventral mesencephalic tegmentum; and midbrain raphe nuclei region after administration of PCPA, PCA, or saline vehicle. There was an excellent correlation between regional 5-HT levels and specific [3H]paroxetine binding in control and PCA-treated rats although this correlation was lost after PCPA treatment. Under these conditions, the 5-HT innervation remains unchanged whereas the concentration of 5-HT and 5-HIAA is greatly reduced. Thus, [3H]paroxetine binding appears to provide a reliable marker of 5-HT innervation density within the mammalian CNS.  相似文献   

15.
The functional properties of GABA(B) receptors were examined in the dorsal raphe nucleus (DRN) and the hippocampus of knock-out mice devoid of the 5-HT transporter (5-HTT-/-) or the 5-HT(1A) receptor (5-HT(1A)-/-). Electrophysiological recordings in brain slices showed that the GABA(B) receptor agonist baclofen caused a lower hyperpolarization and neuronal firing inhibition of DRN 5-HT cells in 5-HTT-/- versus 5-HTT+/+ mice. In addition, [(35)S]GTP-gamma-S binding induced by GABA(B) receptor stimulation in the DRN was approximately 40% less in these mutants compared with wild-type mice. In contrast, GABA(B) receptors appeared functionally intact in the hippocampus of 5-HTT-/-, and in both this area and the DRN of 5-HT(1A)-knock-out mice. The unique functional changes of DRN GABA(B) receptors closely resembled those of 5-HT(1A) autoreceptors in 5-HTT-/- mice, further supporting the idea that both receptor types are coupled to a common pool of G-proteins in serotoninergic neurons.  相似文献   

16.
Total 5-HT binding sites and 5-HT1A receptor density was measured in brain regions of rats treated with imipramine (5 mg/kg body wt), desipramine (10 mg/kg body wt) and clomipramine (10 mg/kg body wt), for 40 days, using [3H]5-HT and [3H]8-OH-DPAT, respectively. It was observed that chronic exposure to tricyclic antidepressants (TCAs) results in significant downregulation of total [3H]5-HT binding sites in cortex (42–76%) and hippocampus (35–67%). The 5-HT1A receptor density was, however, decreased significantly (32–60%) only in cortex with all the three drugs. Interestingly, in hippocampus imipramine treatment increased the 5-HT1A receptor density (14%). The affinity of [3H]8-OH-DPAT was increased only with imipramine treatment both in cortex and hippocampus. The affinity of [3H]5-HT to 5-HT binding sites in cortex was increased with imipramine treatment and decreased with desipramine and clomipramine treatment. 5-HT sensitive adenylyl cyclase (AC) activity was significantly increased in cortex with imipramine (72%) and clomipramine (17%) treatment, whereas in hippocampus only imipramine treatment significantly increased AC activity (50%). In conclusion, chronic treatment with TCAs results in downregulation of cortical 5-HT1A receptors along with concomitant increase in 5-HT stimulated AC activity suggesting the involvement of cortical 5-HT1A receptors in the mechanism of action of TCAs.  相似文献   

17.
Binding studies with [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT), a specific serotonin1A (5-HT1A) receptor agonist, were done on the autopsied brains from control subjects and from patients with chronic schizophrenia. All the patients and controls were of the Japanese race. In the controls, representative Scatchard plots for the specific [3H]8-OH-DPAT bindings in the prefrontal cortex and hippocampus revealed a single component of high affinity binding site (Kd value = 5.7 and 5.9 nM, Bmax value = 80.1 and 101.0 fmol/mg protein, respectively). The [3H]8-OH-DPAT bindings to the prefrontal cortex and hippocampus were potently inhibited by serotonin (IC50 = 6.3 x 10(-9) M) and 5-HT1A agonists (IC50 = 5.0 x 10(-9) - 2.3 x 10(-7) M), while other neurotransmitters, 5-HT2 and 5-HT3 related compounds did not inhibit the binding (IC50 greater than 10(-5) M). The bindings were decreased in the presence of 0.1mM GTP and 0.1mM GppNHp but not in the presence of 0.1mM GMP. In the prefrontal and temporal cortices of schizophrenics, there was a significant increase in the specific [3H]8-OH-DPAT binding, by 40% and 60%, respectively, with no change in the hippocampus, amygdala, cingulum, motor cortex, parietal or occipital cortex, as compared to findings in the controls. Scatchard analysis showed that this increased binding reflects changes in the number of sites but not in the affinity. The effect of 0.1mM GppNHp on the binding to prefrontal cortex was observed in both controls and schizophrenic patients. The bindings were significantly greater in the schizophrenic patients than in controls, in the presence of 0.1mM GppNHp. Our findings suggest that there are GTP-sensitive 5-HT1A sites in the human brain and that selective increases in GTP-sensitive 5-HT1A sites in the prefrontal and temporal cortices of schizophrenics relate to the pathophysiology of schizophrenia.  相似文献   

18.
As the contribution of cannabinoid (CB1) receptors in the neuroadaptations following chronic alcohol exposure is unknown, we investigated the neuroadaptations induced by chronic alcohol exposure on both NMDA and GABA(A) receptors in CB1-/- mice. Our results show that basal levels of hippocampal [(3)H]MK-801 ((1)-5-methyl-10,11-dihydro-5Hdibenzo[a,d]cyclohepten-5,10-imine) binding sites were decreased in CB1-/- mice and that these mice were also less sensitive to the locomotor effects of MK-801. Basal level of both hippocampal and cerebellar [(3)H]muscimol binding was lower and sensitivity to the hypothermic effects of diazepam and pentobarbital was increased in CB1-/- mice. GABA(A)alpha1, beta2, and gamma2 and NMDA receptor (NR) 1 and 2B subunit mRNA levels were altered in striatum of CB1-/- mice. Our results also showed that [(3)H]MK-801 binding sites were increased in cerebral cortex and hippocampus after chronic ethanol ingestion only in wild-type mice. Chronic ethanol ingestion did not modify the sensitivity to the locomotor effects of MK-801 in both genotypes. Similarly, chronic ethanol ingestion reduced the number of [(3)H]muscimol binding sites in cerebral cortex, but not in cerebellum, only in CB1+/+ mice. We conclude that lifelong deletion of CB1 receptors impairs neuroadaptations of both NMDA and GABA(A) receptors after chronic ethanol exposure and that the endocannabinoid/CB1 receptor system is involved in alcohol dependence.  相似文献   

19.
The effect of acute and chronic lithium treatments on 5-hydroxytryptamine (5-HT, serotonin) release and on its regulation by presynaptic 5-HT autoreceptors was studied in [3H]5-HT preloaded superfused rat brain slices. The [3H]5-HT overflow evoked by a 30-s exposure to 65 mM K+ was increased after 3 weeks of ingestion of lithium-containing diet in the three brain areas examined. Acute injection of 4 mEq/kg lithium chloride did not affect 5-HT release. The K+-induced release observed in both control and chronically lithium-treated animals was Ca2+-dependent. Chronic lithium treatment was also found to be associated with a decrease in basal [3H]5-HT overflow in the cortex and hypothalamus but not in hippocampus [corrected]. The Ca2+-independent overflow induced by fenfluramine was also decreased in cortical slices from lithium-treated animals. The sensitivity of the inhibitory 5-HT autoreceptors was assessed by the response to the 5-HT agonist 5-methoxytryptamine. The results indicate a marked reduction in the maximal inhibition of [3H]5-HT release induced by 5-methoxytryptamine in slices obtained from animals which have been treated with lithium for 3 weeks. These data suggest that the functional down regulation of the prejunctional 5-HT sites may be responsible for the increase in K+-stimulated 5-HT overflow in brain slices of animals treated chronically with lithium.  相似文献   

20.
The effect of chronic administration (0.4% for 30 days) of lithium carbonate (Li2CO3) on 5-HT1 receptor-linked second messenger system was studied in regions of rat brain. We observed that chronic treatment of Li2CO3, significantly decreased the density of [3H]5-HT binding sites in cortex (62%), hippocampus (64%) and striatum (65%), compared to the control levels. The affinity of [3H]5-HT to 5-HT1 binding sites was significantly decreased in all the regions. A significant decrease in the density of high affinity 5-HT1A receptor sites was observed in cortex (81%) and hippocampus (42%), without change in the affinity of [3H]8-OH-DPAT for 5-HT1A sites in these regions. 5-HT-stimulated, but not basal, adenylyl cyclase activity was significantly increased in all the regions after Li treatment. The present study concludes that the increase in the 5-HT-stimulated adenylyl cyclase activity might be attributed to the functional downregulation of 5-HT1 receptors, as these are negatively coupled to adenylyl cyclase, suggesting the involvement of 5-HT1 receptor mediated response in the therapeutic efficacy of lithium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号