首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post treatment of effluents from heterotrophic groundwater denitrification fluidized bed reactors (FBR) designed to achieve drinking water quality has been investigated. The denitrification process adds to the dissolved organic compounds, biomass and bacteria in the effluent. They are also lacking dissolved oxygen. Effluents from the process were treated in combined post treatment processes based on either a trickling filter and sedimentation unit (‘TF combination’) or contact flocculation (‘CF combination’). Both processes were followed by sand filtration, granular activated carbon (GAC) and chlorination. Results regarding total suspended solids (TSS) and turbidity removal showed an advantage to the ‘CF combination’, and the target turbidity (NTU <1) was always achieved when the alum dose was 10 or 20 mg l−1. Backwash of the sand filter and GAC column was required after 27 h of operation (average value). An average total reduction in dissolved organic carbon (DOC) of 40% was observed with a final DOC of 3.5–4 mg L−1. Most of the removal of the DOC occurred in the sand filter (28%), while the GAC contribution was smaller (18%). No regrowth potential was observed using the Werner method when a pure culture of Pseudomonas fluorescens P17 was used as inoculum in samples of chlorinated effluent (post chlorination). When a mixed culture of indigenous bacteria was used as inoculum, a high regrowth potential was observed. Installing an additional chlorination unit before the sand filter column (pre and post chlorination) resulted in effluent with no regrowth potential for both Pseudomonas fluorescens P17 and indigenous bacteria. Received 17 October 1997/ Accepted in revised form 29 May 1998  相似文献   

2.
The performance of a drum filter of a recirculating eel culture unit was studied. Electron microscopy scanning micrographs of drum filter panels showed a high degree of clogging of the filter mesh (after 4 months of operation). Mean removal efficiency for Total Suspended Solids (TSS) fluctuated considerably between subsequent sampling periods (9.6–18.4%). Drum filtration changed the particle size distribution of fish tank drainage water, resulting in increasing amounts (from 56 to 67% of dry weight, before and after filter passage) of the smaller particle fractions (< 20 μm), thereby indicating a partial breakdown of larger particles during the filtration process. Possible reasons for rapid filter clogging and suggestions for improvements in filter performance are discussed.  相似文献   

3.
In cell stress research, there is still a need to apply long-term hydrostatic pressure without changing any other environmental condition. We present here a new, open, pressurized chamber system allowing long-term sustained and dynamic application of hydrostatic pressure with the option of additional tension. Based on the computer-controlled Flexcell Strain Unit, we designed a pressurized chamber with a dynamic airflow and a defined membrane extension, which can be regulated by spacers. During operation up to 26.6kPa, O(2) partial pressures and pH in the cell-culture medium do not change compared to control cultures kept at normal atmosphere.  相似文献   

4.
A microfiltration cell-recycle pilot-scale system was developed comprised of a conventional continuous-flow fermentor connected to an in situ steam-sterilizable cross-flow ceramic filter with a backflushing device. A microcomputer was used to control filtration pressure, tangential flow velocity, and backflushing. Performance of the system was tested with the anaerobic production of thermostable extracellular beta-amylase at 60 degrees C by Clostridium thermosulfurogenes on maltose or malto-dextrin media. Filtration rates during continuous cultivation were between 20 and 60 L/m(2)/h. The maltodextrin and cell debris occurring at high retentate flow rates or filtration pressures impaired the performance of the filter. Backflushing initially improved the permeate flux to 42% in a maltose medium and to 10% in a maltodextrin medium, but the effect diminished with time. The productivity of beta-amylase (as much as 48 U/mL/h) and concentration of biomass (as much as 14 g/L) were increased 11- and 12-fold, respectively, if compared to values obtained in a chemostat. The concentration of beta-amylase rose to 220 U/mL in the reactor, which was 5.5-fold more than under comparable conditions in a chemostat.  相似文献   

5.
Laboratory column studies were conducted at the Utah Water Research Laboratory, Logan, Utah, to evaluate reovirus removal from drinking water supplies by slow-rate sand filtration (SSF). Columns, constructed to simulate a full-scale SSF field operation, were inoculated with reovirus at ca. 1,000-times-greater concentrations than those typically found in domestic sewage. Reovirus removal and inactivation were investigated as functions of filter maturity and other filter sand characteristics. Reovirus removal studies demonstrated that the SSF process is capable of reducing reovirus in influent water by a minimum of 4 log concentration units under certain conditions of water quality, flow rate, and sand bed construction. Infectious reovirus was not detected in effluent samples from any of the sand beds studied, after inoculation of the SSF columns; therefore, removal efficiencies were not affected significantly by characteristics, including age, of the two filter sands evaluated. Studies conducted with radioactively labeled reovirus demonstrated that reovirus removed from influent water was distributed throughout the entire length of the filter beds. Concentrations of reovirus in the filter sands decreased with increasing bed depth. The greatest removal occurred in the top few centimeters of all sand beds. No infectious reovirus could be detected in clean or mature sand bed media, indicating that reoviruses were inactivated in the filter.  相似文献   

6.
Reovirus removal and inactivation by slow-rate sand filtration.   总被引:1,自引:1,他引:1       下载免费PDF全文
Laboratory column studies were conducted at the Utah Water Research Laboratory, Logan, Utah, to evaluate reovirus removal from drinking water supplies by slow-rate sand filtration (SSF). Columns, constructed to simulate a full-scale SSF field operation, were inoculated with reovirus at ca. 1,000-times-greater concentrations than those typically found in domestic sewage. Reovirus removal and inactivation were investigated as functions of filter maturity and other filter sand characteristics. Reovirus removal studies demonstrated that the SSF process is capable of reducing reovirus in influent water by a minimum of 4 log concentration units under certain conditions of water quality, flow rate, and sand bed construction. Infectious reovirus was not detected in effluent samples from any of the sand beds studied, after inoculation of the SSF columns; therefore, removal efficiencies were not affected significantly by characteristics, including age, of the two filter sands evaluated. Studies conducted with radioactively labeled reovirus demonstrated that reovirus removed from influent water was distributed throughout the entire length of the filter beds. Concentrations of reovirus in the filter sands decreased with increasing bed depth. The greatest removal occurred in the top few centimeters of all sand beds. No infectious reovirus could be detected in clean or mature sand bed media, indicating that reoviruses were inactivated in the filter.  相似文献   

7.
This research investigated the feasibility of coarse/fine sand filtration for removing organic materials from turkey processing wastewater. Sand filtration was tested with three organic and hydraulic loadings. Six two-layer sand bioreactors were in three groups, each with 5 cm layer of pea gravel at the bottom to support layers of fine sand (46 cm) and coarse sand (15 cm) to a height of 66 cm. The bioreactors were inoculated with a mixture of 20% (vol/vol) of wastewater lagoon sludge, 40% (vol/vol) of turkey processing wastewater, and 40% (vol/vol) of BOD(5) dilution water before starting the column operation with turkey processing wastewater. The wastewater contained 1270+/-730 mg COD/L and was applied to each sand bioreactor at hydraulic loading rates of 94% during 80 days of column operation at low and medium hydraulic loading rates (132 L/m(2)/day). The removal at the highest hydraulic loading rate (264 L/m(2)/day) declined after the appearance of a black zone in the top layer of fine sand on day 30 for one reactor and day 50 for the other. The sand filtration in this study represents a feasible treatment for turkey processing wastewater and its efficiency and the life span of the process are associated with the extent of hydraulic loading of the sand bioreactors.  相似文献   

8.
Manganese oxidation by microbial consortia from sand filters   总被引:5,自引:0,他引:5  
The role of microbial consortia on the removal of manganese (Mn) was examined on sand from three different Belgian rapid sand filters for the treatment of ground water. Microorganisms closely associated with deposits of Fe and amorphous Mn precipitates were observed by SEM and EDAX techniques on sand from the filters able to remove Mn efficiently. Bacterial counts were performed. Of the CFU enumerated on PYM-medium, 25–33% displayed Mn-oxidizing activity.Batch cultures were set up by inoculating a Mn-containing, low organic medium with sand from one of the filters. Microbial growth resulted in the formation of Mn-removing bacterial flocs and a pH increase. Suppression of microbial growth by addition of azide, kanamycin, or by autoclaving reduced removal of Mn2+ from 0.5 mM/day to 0.05–0.11 mM/day. Buffering the pH of the medium at 7.5 (0.1 mM Hepes) decelerated the Mn removal but did not halt it, whereas microelectrode measurements revealed a clear pH drop of about 0.7 units inside bacterial flocs. In the absence of Mn2+, the pH drop was only 0.4 units. The auto-catalytic removal of Mn by the Mn oxide coated filter sand was not sufficient to explain the Mn removal observed. Inactivated cells were not capable of a pronounced autocatalytic Mn removal. Experiments with enrichment cultures indicated that the Mn-removing capacity of the microbial sand filter consortia was not constitutive but was promoted by preadaptation and the presence of a substratum. These results clearly link Mn oxidation in rapid sand filters to microbial processes. Offprint requests to: W. Verstraete.  相似文献   

9.
Wang Z  Banks C 《Biodegradation》2006,17(5):415-422
The research examines the potential for bio-clogging in filter packs containing fine sand of the type typically used in extraction wells for pumping leachates containing fine particulate matter, such as cement kiln dust (CKD). Three filter media with different particle sizes were used: 1.7–4.75, 0.35–1.0, and 0.235–0.45 mm. Each sand filter was tested using a leachate recirculating column reactor with a free drainage layer, on top of which was placed the filtration medium which was kept saturated and at a positive hydrostatic head by a 2-l reservoir of leachate. The leachate was collected from a landfill site that had been used for the co-disposal of municipal solid waste (MSW) and CKD. The leachate used was filtered by passing through a Whatman GFA filter paper before being added to the reactors in order to eliminate as far as possible the non-biological clogging which might have resulted from the introduction of particulate matter in the form of CKD. The filters and a control experiment were run under anaerobic conditions at 35 °C. The bio-clogging potential was observed by taking differential manometer readings from manometers located in the drainage and reservoir sections of the reactor. No clogging was detected using the coarser of the filter media, but there was some clogging when a finer filter medium was used. Head space gas analysis indicated that methanogenic activity was inhibited and analysis of the liquid phase indicated that the microbial process responsible for removal of chemical oxygen demand (COD) was principally one of sulphate reduction.  相似文献   

10.
This research aimed to investigate the applicability of an integrated constructed wetland system for P removal from low-strength wastewaters. The integrated system consisted of a constructed wetland and a post-filter unit, in series; both units were packed with oyster shells (OS) as adsorption and filtration media. Based on 1 year of operation under the overall hydraulic retention time of 3.5 days, the integrated system was found to be highly effective in removing BOD5 (92.3%), N (85.7%), P (98.3%) and total suspended solids (TSS) (94.4%) compounds, in which the constructed wetland unit was responsible for most of the treatment performance, while the post-filter unit served as a polishing unit, especially in the removal of the remaining N, P and TSS. To simulate heavy rainfall conditions, the integrated system was tested under hydraulic shock loading at the overall hydraulic retention time of 0.7 day for 14 days that represented the extreme period of high drainage flows. There were some increases of P concentrations in the post-filter effluent during the 14 days of operation up to about 5 mg/l, but these P concentrations were later decreased to about 1 mg/L after the shock loading period. These experimental results suggested the applicability of the integrated constructed wetland system which used oyster shells as adsorption and filtration media for P removal which should help to minimize eutrophication problems in receiving waters.  相似文献   

11.
The bacterioplankton community of confined seawater at 25 degrees C changed significantly within 16 h of collection. Confinement increased CFU, total cell number (by epifluorescence microscopy), and average cell volume of bacterioplankton and increased the turnover rate of amino acids in seawater sampled at Frying Pan Shoals, N.C. The bacterioplankton community was characterized by two components: differential doubling times during confinement shifted dominance from bacteria which were nonculturable to bacteria which were culturable on a complex nutrient medium. Culturable cells (especially those of the genera Pseudomonas, Alcaligenes, and Acinetobacter) increased from 0.08% of the total cell number in the seawater immediately after collection to 13% at 16 h and 41% at 32 h of confinement. Differential filtration before confinement indicated that particles passing through a 3.9-microns-, but retained by a 0.2-micron-, pore-size Nuclepore filter may be a major source of primary amines to the confined population. The 3.0-microns filtration increased growth rate and ultimate numbers of culturable cells through the removal of bacterial predators or the release of primary amines from cells damaged during filtration or both.  相似文献   

12.
The bacterioplankton community of confined seawater at 25 degrees C changed significantly within 16 h of collection. Confinement increased CFU, total cell number (by epifluorescence microscopy), and average cell volume of bacterioplankton and increased the turnover rate of amino acids in seawater sampled at Frying Pan Shoals, N.C. The bacterioplankton community was characterized by two components: differential doubling times during confinement shifted dominance from bacteria which were nonculturable to bacteria which were culturable on a complex nutrient medium. Culturable cells (especially those of the genera Pseudomonas, Alcaligenes, and Acinetobacter) increased from 0.08% of the total cell number in the seawater immediately after collection to 13% at 16 h and 41% at 32 h of confinement. Differential filtration before confinement indicated that particles passing through a 3.9-microns-, but retained by a 0.2-micron-, pore-size Nuclepore filter may be a major source of primary amines to the confined population. The 3.0-microns filtration increased growth rate and ultimate numbers of culturable cells through the removal of bacterial predators or the release of primary amines from cells damaged during filtration or both.  相似文献   

13.
Maize (Zea mays) seedlings were exposed to elevated atmospheric pressures while growing in moist sand in open plastic envelopes to evaluate the effects of directly applied atmospheric pressure on ethylene production and root growth. Effects were evaluated after 24 h. The threshold pressures necessary to promote ethylene production and decrease root elongation were about 600 and 400 kPa, respectively. Direct atmospheric pressure, at levels up to 300 kPa, mimicked the control decrease in root diameter and increased diameter only slightly at 500 to 1200 kPa. In contrast, in previous work it was shown that physical impedance resulting from compression of the growth medium by external application of 100 kPa increased the ethylene production rate 4-fold and the root diameter 7-fold while reducing elongation 75% in 10 h. The relative insensitivity of roots to direct atmospheric pressure suggests that they perceive physical impedance, achieved experimentally by compressing the growth medium, via a surface mechanism rather than via a pressure-sensing mechanism.  相似文献   

14.
The present study describes the development of a bacterial cellulose (BC) filter for the treatment of oily waters. BC membranes were produced using an alternative medium containing 2.5 % corn steep liquor. Samples of previously purified membranes were characterized and tested as filters for the separation of oil from water (oil concentrations of 10, 150 and 230 ppm). Flow rate, filter diameter and membrane thickness after 6 and 10 days of cultivation were evaluated in a filtration system constructed in polyvinyl chloride. The BC membranes presented satisfactory flexibility, thermal stability and mechanical strength. However, the membrane obtained after 10 days supported 100 % more force than the membrane obtained after 6 days. The experiments revealed 100 % removal of the oil from all emulsions. The filtration flow rate increased proportionally to the filter diameter and decreased from the 6-day membrane to the 10-day membrane. The results of the present study are promising and demonstrate the efficiency, durability and strength of this novel biodegradable, non-toxic material for the treatment of oily waters generated during industrial activities.  相似文献   

15.
To alleviate the fouling of a filter, simple substrates, dynamic filtration, and granular sludge were applied in an anaerobic membrane bioreactor (AnMBR). The results showed that under a transmembrane pressure < 20 kPa, the filter flux ranged between 15 and 20 l (m?2 h)?1 for a period of 30 days. The flux was higher than the typical flux of AnMBRs with conventional membranes and most current dynamic filters. In addition, the low cost of the filter avoided the need for a higher flux. Moreover, a stable granular sludge bed, which consumed all volatile fatty acids, was maintained. A compact fouling/filtration layer formed on the filter, which contributed to low effluent chemical oxygen demand concentrations and turbidity. In addition, substrate scarcity in the filtration zone resulted in the evolution of diverse bacteria on the filter.  相似文献   

16.

A pilot-scale deep bed denitrification filter using quartz sand as the filter media was operated under filtration velocity of 5.23 m/h. Nitrate, nitrite, ammonia, and total nitrogen removal rates were relatively high at influent C/N ratios of 4:1 and 5:1. A model was developed using software to simulate the processes operating in the filter and improve the related parameters in the actual operations. The normalized sensitivity coefficient and the mean square sensitivity measure were used for the sensitivity analysis. Results showed that the stoichiometric parameters were the most sensitive, which were related to methylotrophs and biofilm. Measured data were consistent with the simulations. Moreover, the order of significance of factors affecting nitrate nitrogen removal was as follows: influent chemical oxygen demand, influent nitrate nitrogen, and hydraulic retention time. Last, the denitrification dynamic model was obtained at influent C/N ratio of 5:1.

  相似文献   

17.
Two-phase anaerobic digestion of cheese whey was investigated in a system consisting of a stirred acidogenic reactor followed by a stirred methanogenic reactor, the latter being coupled to a membrane filtration system to enable removal of soluble effluent whilst retaining solids. The acidogenic reactor was operated at a hydraulic retention time (HRT) of one day, giving maximum acidification of 52.25% with up to 5 g/l volatile fatty acids, of which 63.7% was acetic acid and 24.7% was propionic acid. The methanogenic reactor received an organic load up to 19.78 g COD/ld, corresponding to a HRT of 4 days, at which 79% CODs and 83% BOD(5) removal efficiencies were obtained. Average removals of COD, BOD(5) and TSS in the two-phase anaerobic digestion process were 98.5%, 99% and 100%, respectively. The daily biogas production exceeded 10 times reactor volume and biogas methane content was greater than 70%.  相似文献   

18.
The efficiency of a biosorbent prepared from Eichhornia crassipes roots (ECR) was explored for the treatment of domestic sewage water in combination with low-cost ceramic microfiltration membrane. Batch sorption studies were conducted as a function of biosorbent dose, initial chemical oxygen demand (COD) loading, and temperature. Sorption equilibrium data of varying initial COD values (116–800 mg/L) indicated high potential of ECR for COD removal. Using 0.25 g/L of biosorbent dose, the equilibrium adsorption capacity was obtained as 2480 mg/g at 20°C for an initial COD loading of 800 mg/L. Microfiltration study was performed using ceramic membrane made from composition of α-alumina and clay. The effect of operating parameters on filtration characteristics was observed in terms of permeate flux. Permeate samples were characterized in terms of various parameters both for the direct filtration, as well as biosorbent-assisted filtration. The filtration behavior of wastewater at varying transmembrane pressure was explained using various membrane fouling models. The results suggested that microfiltration of domestic wastewater with incorporation of biosorbent (0.25 g/L) was highly effective for removal of organic load (>90%), turbidity (>99%), and total suspended solids (TSS) (93–95%) and the treated water quality was suitable for reuse in various purposes, such as gardening, floor and car washing, etc.  相似文献   

19.
This study focuses on comparing the performance of submerged membrane bioreactor (SMBR) and submerged membrane adsorption bioreactor (SMABR) over a period of 20 days at a hydraulic retention time (HRT) of 3.1h. The effects of PAC on critical flux and membrane fouling were also investigated. The SMABR exhibited better results in terms of mixed liquor suspended solids (MLSS) growth, DOC removal (over 96%), COD removal (over 95%), transmembrane pressure (TMP) and oxygen uptake rate. Nearly 100% of bacteria and 100% of total coliforms were removed in both systems. The addition of PAC could maintain the critical flux at a lower TMP value (7.5 kPa), while irreversible fouling caused by PAC occurred when the filtration flux exceeded critical flux.  相似文献   

20.
This research aimed to investigate the technical feasibility of integrated constructed wetland system consisting of a pre-filter unit and a constructed wetland (CW), in series; packed with alum sludge (AS) and oyster shells (OS) as the filter media, respectively, for nitrogen and phosphorus removal from domestic wastewater. Based on the 240 days of operation from January to August 2007, this integrated system was highly effective in removing BOD, N, P and TSS compounds which were found to be 89.5%, 68.8%, 99.4% and 89.9%, respectively. After this period, the integrated system was modified as the CW and post-filter unit, in series. The post-filter of this modified integrated system was operated during 60 days with cover for light shield and during another 60 days with no cover from September to December 2007. The treatment performance of modified integrated system was effective in removing BOD5, N, P and TSS compounds which were found to be 91.4%, 86.8%, 99.7% and 73%, respectively, during which the post-filter had operated with no cover. To simulate high rainfall conditions, the integrated system was tested under hydraulic shock loading at the overall hydraulic retention time of 0.7 day during one day. This hydraulic shock loading conditions made BOD5, TN, TSS concentration increase, but made no effect on P concentration. Integrated system combined a pre-filter and a CW unit or a CW unit followed by a post-filter is recommended for use in domestic wastewater which should result in high treatment performance, especially on P removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号