首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chloroplast chaperonin system is indispensable for the biogenesis of Rubisco, the key enzyme in photosynthesis. Using Chlamydomonas reinhardtii as a model system, we found that in vivo the chloroplast chaperonin consists of CPN60α, CPN60β1 and CPN60β2 and the co‐chaperonin of the three subunits CPN20, CPN11 and CPN23. In Escherichia coli, CPN20 homo‐oligomers and all possible other chloroplast co‐chaperonin hetero‐oligomers are functional, but only that consisting of CPN11/20/23‐CPN60αβ1β2 can fully replace GroES/GroEL under stringent stress conditions. Endogenous CPN60 was purified and its stoichiometry was determined to be 6:2:6 for CPN60α:CPN60β1:CPN60β2. The cryo‐EM structures of endogenous CPN60αβ1β2/ADP and CPN60αβ1β2/co‐chaperonin/ADP were solved at resolutions of 4.06 and 3.82 Å, respectively. In both hetero‐oligomeric complexes the chaperonin subunits within each ring are highly symmetric. Through hetero‐oligomerization, the chloroplast co‐chaperonin CPN11/20/23 forms seven GroES‐like domains, which symmetrically interact with CPN60αβ1β2. Our structure also reveals an uneven distribution of roof‐forming domains in the dome‐shaped CPN11/20/23 co‐chaperonin and potentially diversified surface properties in the folding cavity of the CPN60αβ1β2 chaperonin that might enable the chloroplast chaperonin system to assist in the folding of specific substrates.  相似文献   

2.
3.
4.
Tuberization in potato is controlled by hormonal and environmental signals. Ca(2+), an important intracellular messenger, and calmodulin (CaM), one of the primary Ca(2+) sensors, have been implicated in controlling diverse cellular processes in plants including tuberization. The regulation of cellular processes by CaM involves its interaction with other proteins. To understand the role of Ca(2+)/CaM in tuberization, we have screened an expression library prepared from developing tubers with biotinylated CaM. This screening resulted in isolation of a cDNA encoding a novel CaM-binding protein (potato calmodulin-binding protein (PCBP)). Ca(2+)-dependent binding of the cDNA-encoded protein to CaM is confirmed by (35)S-labeled CaM. The full-length cDNA is 5 kb long and encodes a protein of 1309 amino acids. The deduced amino acid sequence showed significant similarity with a hypothetical protein from another plant, Arabidopsis. However, no homologs of PCBP are found in nonplant systems, suggesting that it is likely to be specific to plants. Using truncated versions of the protein and a synthetic peptide in CaM binding assays we mapped the CaM-binding region to a 20-amino acid stretch (residues 1216-1237). The bacterially expressed protein containing the CaM-binding domain interacted with three CaM isoforms (CaM2, CaM4, and CaM6). PCBP is encoded by a single gene and is expressed differentially in the tissues tested. The expression of CaM, PCBP, and another CaM-binding protein is similar in different tissues and organs. The predicted protein contained seven putative nuclear localization signals and several strong PEST motifs. Fusion of the N-terminal region of the protein containing six of the seven nuclear localization signals to the reporter gene beta-glucuronidase targeted the reporter gene to the nucleus, suggesting a nuclear role for PCBP.  相似文献   

5.
用RT-PCR法克隆了成熟的玉米非特异性脂转移蛋白的cDNA,将它连接到表达质粒上并转化至大肠杆菌中表达。以钙调素凝胶覆盖法和钙调素亲和层析下拉实验对表达产物进行分析,证明它具有结合钙调素的活性,并且这种结合不依赖于Ca^2+,与前期研究中钙调素结合蛋白-10和拟南芥非特异性脂转移蛋白1的结合特性相同。采用基因删除和缺失突变的方法研究玉米非特异性脂转移蛋白与钙调素结合的结构域,结果表明钙调素结合于47-60位氨基酸,预测的蛋白质二级结构为碱性双亲α-螺旋结构。  相似文献   

6.
WRKY group IId transcription factors interact with calmodulin   总被引:5,自引:0,他引:5  
Park CY  Lee JH  Yoo JH  Moon BC  Choi MS  Kang YH  Lee SM  Kim HS  Kang KY  Chung WS  Lim CO  Cho MJ 《FEBS letters》2005,579(6):1545-1550
  相似文献   

7.
Moon BC  Choi MS  Kang YH  Kim MC  Cheong MS  Park CY  Yoo JH  Koo SC  Lee SM  Lim CO  Cho MJ  Chung WS 《FEBS letters》2005,579(18):3885-3890
Calmodulin (CaM), a key Ca(2+) sensor in eukaryotes, regulates diverse cellular processes by interacting with many proteins. To identify Ca(2+)/CaM-mediated signaling components, we screened an Arabidopsis expression library with horseradish peroxidase-conjugated Arabidopsis calmodulin2 (AtCaM2) and isolated a homolog of the UBP6 deubiquitinating enzyme family (AtUBP6) containing a Ca(2+)-dependent CaM-binding domain (CaMBD). The CaM-binding activity of the AtUBP6 CaMBD was confirmed by CaM mobility shift assay, phosphodiesterase competition assay and site-directed mutagenesis. Furthermore, expression of AtUBP6 restored canavanine resistance to the Deltaubp6 yeast mutant. This is the first demonstration that Ca(2+) signaling via CaM is involved in ubiquitin-mediated protein degradation and/or stabilization in plants.  相似文献   

8.
9.
10.
11.
We have investigated the role of the circadian clock in the regulation of expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) synthesis, assembly, and activation. Circadian oscillations in RCA (the gene encoding Rubisco activase) and RBCS (the gene encoding Rubisco small subunit) mRNA accumulation, with peak abundance occurring soon after dawn, occur in Arabidopsis thaliana grown in a light-dark (LD) photoperiod. These oscillations persist in plants that have been transferred from LD to either continuous darkness (DD) or continuous light (LL). In contrast, CPN60[alpha] (the gene encoding [alpha]-chaperonin) and CPN60[beta] (the gene encoding [beta]-chaperonin) mRNA abundance oscillates in a diurnal, but not in a circadian, fashion. Although rapid damping of the circadian oscillation in RCA mRNA abundance is observed in Arabidopsis that have been grown in LD and then transferred to DD for 2 d, the circadian oscillations in RCA and RBCS mRNA abundance persist for at least five continuous cycles in LL, demonstrating the robustness of the circadian oscillator.  相似文献   

12.
Chan CW  Saimi Y  Kung C 《Gene》1999,231(1-2):21-32
Ca2+/calmodulin (CaM) regulates various physiological processes in a wide variety of organisms, metazoa and protists alike. To better understand Ca2+/CaM-dependent processes, particularly those with membrane-associated components, we studied Ca2+/CaM-binding membrane proteins in Paramecium tetraurelia, a unicellular model system. A CaM-binding protein, PCM1 (Paramecium CaM-binding membrane-bound protein), from a detergent-solubilized ciliary membrane fraction was identified and purified through Ca2+-dependent CaM-affinity chromatography. PCM1 has an apparent molecular mass of approx. 65kDa. It binds radiolabeled CaM in blot overlay assays and binds to CaM-affinity columns, both only in the presence of 10 microM or higher Ca2+. Three peptide sequences from PCM1 were obtained, and polymerase chain reaction (PCR) and Southern hybridization experiments were designed accordingly, leading to a partial cDNA clone for PCM1 and the discovery of three homologs: PCM2, PCM3 and PCM4. Amino acid sequences predicted by the full-length coding sequence for PCM3 and partial genes for PCM1, PCM2 and PCM4 are very similar (approx. 85% amino-acid identities). Their sequences indicate that they are hitherto novel proteins with beta/gamma-crystallin domains, cysteine-rich regions and potential CaM-binding domains. These protein motifs are suggested to mediate protein-protein interaction important for Ca2+/CaM signal transduction event(s) through the PCM family of proteins.  相似文献   

13.
14.
15.
The mitogen-activated protein kinases (MAPKs) are key signal transduction molecules, which respond to various external stimuli. The MAPK phosphatases (MKPs) are known to be negative regulators of MAPKs in eukaryotes. We screened an Arabidopsis cDNA library using horseradish peroxidase-conjugated calmodulin (CaM), and isolated AtMKP1 as a CaM-binding protein. Recently, tobacco NtMKP1 and rice OsMKP1, two orthologs of Arabidopsis AtMKP1, were reported to bind CaM via a single putative CaM binding domain (CaMBD). However, little is known about the regulation of phosphatase activity of plant MKP1s by CaM binding. In this study, we identified two Ca(2+)-dependent CaMBDs within AtMKP1. Specific binding of CaM to two different CaMBDs was verified using a gel mobility shift assay, a competition assay with a Ca(2+)/CaM-dependent enzyme, and a split-ubiquitin assay. The peptides for two CaMBDs, CaMBDI and CaMBDII, bound CaM in a Ca(2+)-dependent manner, and the binding affinity of CaMBDII was found to be higher than that of CaMBDI. CaM overlay assays using mutated CaMBDs showed that four amino acids, Trp(453) and Leu(456) in CaMBDI and Trp(678) and Ile(684) in CaMBDII, play a pivotal role in CaM binding. Moreover, the phosphatase activity of AtMKP1 was increased by CaM in a Ca(2+)-dependent manner. Our results suggest that two important signaling pathways, Ca(2+) signaling and the MAPK signaling cascade, are connected in plants via the regulation of AtMKP1 activity. To our knowledge, this is the first report to show that the biochemical activity of MKP1 in plants is regulated by CaM.  相似文献   

16.
Calmodulin (CaM) is known to play an important role in the regulation of TRP channels activity. Although it has been reported that CaM binds to the C-terminus of TRPV1 (TRPV1-CT), no classic CaM-binding motif was found in this region. In this work, we explored this unusual TRPV1 CaM-binding motif in detail and found that five residues from a putative CaM-binding motif are important for TRPV1-CT’s binding to CaM, with arginine R785 being the most essential residue. The homology modelling suggests that a CaM-binding motif of TRPV1-CT forms an alpha helix that docks into the central cavity of CaM.  相似文献   

17.
Probing of a cDNA expression library from multicellular development of Dictyostelium discoideum using a recombinant radiolabelled calmodulin probe (35S-VU1-CaM) led to the isolation of a cDNA encoding a putative CaM-binding protein (CaMBP). The cDNA contained an open reading frame of 951 bp encoding a 227aa polypeptide (25.5 kDa). Sequence comparisons led to highly significant matches with cytosolic thymidine kinases (TK1; EC 2.7.1.21) from a diverse number of species including humans (7e-56; 59% Identities; 75% Positives) indicating that the encoded protein is D. discoideum TK1 (DdTK1; ThyB). DdTK1 has not been previously characterized in this organism. In keeping with its sequence similarity with DdTK1, antibodies against humanTK1 recognize DdTK1, which is expressed during growth but decreases in amount after starvation. A CaM-binding domain (CaMBD; 20GKTTELIRRIKRFNFANKKC30) was identified and wild type DdTK1 plus two constructs (DdTK deltaC36, DdTK deltaC75) possessing the domain were shown to bind CaM in vitro but only in the presence of calcium while a construct (DdTK deltaN72) lacking the region failed to bind to CaM. Thus, DdTK1 is a Ca2+-dependent CaMBP. Sequence alignments against TK1 from vertebrates to viruses show that CaM-binding region is highly conserved. The identified CaMBD overlaps the ATP-binding (P-loop) domain suggesting CaM might affect the activity of this kinase. Recombinant DdTK is enzymatically active and showed stimulation by CaM (113+/-0.5%) an in vitro enhancement that was prevented by co-addition of the CaM antagonists W7 (91.2+/-0.8%) and W13 (96.6+/-0.6%). The discovery that TK1 from D. discoideum, and possibly other species including humans and a large number of human viruses, is a Ca2+-dependent CaMBP opens up new avenues for research on this medically relevant protein.  相似文献   

18.
Mura A  Medda R  Longu S  Floris G  Rinaldi AC  Padiglia A 《Biochemistry》2005,44(43):14120-14130
Calmodulin (CaM) is a ubiquitous Ca(2+) sensor found in all eukaryotes, where it participates in the regulation of diverse calcium-dependent physiological processes. In response to fluctuations of the intracellular concentration of Ca(2+), CaM binds to a set of unrelated target proteins and modulates their activity. In plants, a growing number of CaM-binding proteins have been identified that apparently do not have a counterpart in animals. Some of these plant-specific Ca(2+)/CaM-activated proteins are known to tune the interaction between calcium and H(2)O(2) in orchestrating plant defenses against biotic and abiotic stresses. We previously characterized a calcium-dependent peroxidase isolated from the latex of the Mediterranean shrub Euphorbia characias (ELP) [Medda et al. (2003) Biochemistry 42, 8909-8918]. Here we report the cDNA nucleotide sequence of Euphorbia latex peroxidase, showing that the derived protein has two distinct amino acid sequences recognized as CaM-binding sites. The cDNA encoding for an E. characias CaM was also found and sequenced, and its protein product was detected in the latex. Results obtained from different CaM-binding assays and the determination of steady-state parameters showed unequivocally that ELP is a CaM-binding protein activated by the Ca(2+)/CaM system. To the best of our knowledge, this is the first example of a peroxidase regulated by this classic signal transduction mechanism. These findings suggest that peroxidase might be another node in the Ca(2+)/H(2)O(2)-mediated plant defense system, having both positive and negative effects in regulating H(2)O(2) homeostasis.  相似文献   

19.
20.
In the nervous system, Cdk5 and its neuronal activator p35 are involved in the control of various activities, including neuronal differentiation and migration. Recently, we have reported that p35 is a microtubule-associated protein that regulates microtubule dynamics ( Hou, Z., Li, Q., He, L., Lim, H. Y., Fu, X., Cheung, N. S., Qi, D. X., and Qi, R. Z. (2007) J. Biol. Chem. 282, 18666-18670 ). Here we present two regulatory modes of p35 function as a microtubule-associated protein. First, p35 is Ca(2+)-dependent calmodulin (CaM)-binding protein. The CaM- and microtubule binding domains are localized to overlapping regions at the N terminus of p35. Within the CaM-binding region, Ala substitution for Trp-52 abolishes the CaM-binding activity, corroborating specific CaM-binding of p35. Furthermore, CaM blocks p35 association with microtubules in a Ca(2+)-specific manner, suggesting that p35 may be involved in the Ca(2+)/CaM-mediated inhibition of microtubule assembly. Second, p35 phosphorylation by Cdk5 interferes with the microtubule-binding and polymerizing activities of p35. Using a mutational approach, we found that only phosphorylation at Thr-138, one of the two residues primarily phosphorylated in vivo, inhibits the polymerizing activity. In PC12 cells, expression of p35 promotes nerve growth factor-induced neurite outgrowth under a Cdk5 inhibitory condition. Such p35 activity is impaired by the phosphomimetic mutation of Thr-138. These data suggest that Thr-138 phosphorylation plays a critical role in the control of the p35 functions in microtubule assembly and neurite outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号