首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The localization of a gene responsible for a normal variant of the human electroencephalogram to the distal part of chromosome 20q is reported. A linkage analysis, including 17 families with 191 individuals, tested with 73 RFLPs and 22 blood and serological markers, was performed for the low-voltage electroencephalogram. This is a normal variant of the human electroencephalogram with an autosomal dominant mode of inheritance. The results present strong evidence for close linkage with the highly polymorphic marker CMM6 (D20S19) and for genetic heterogeneity.  相似文献   

2.
Familial adenomatous polyposis (FAP), a Mendelian disorder that includes familial polyposis coli (FPC) and Gardner syndrome (GS), has an autosomal dominant mode of inheritance. It is characterized by hundreds to thousands of adenomatous polyps that can progress to carcinoma of the colon, suggesting that the gene that harbors the FAP germ-line mutation may play an important role in the somatic genetic pathway to colon cancer. The defect responsible for FAP was recently mapped to the long arm of chromosome 5 by linkage between the FPC phenotype and a locus defined by DNA probe pC11p11 (D5S71), located at 5q21-22. Because an important next step in the paradigm for identification of a disease gene is to obtain a more precise localization, we isolated and mapped by linkage six additional polymorphic DNA markers in the FAP region. Subsequent linkage analysis in six pedigrees, three having the FPC phenotype and three segregating GS, placed the FAP locus very close to a new marker, YN5.48 (D5S81), that is approximately 17 centimorgans distal to C11p11 on the genetic map. The analysis revealed no evidence of genetic heterogeneity between the two phenotypes, a question that had not been clearly resolved by the earlier studies. The new set of markers in the near vicinity of the FAP locus represents a further step toward isolation of the genetic defect and provides the opportunity for preclinical diagnosis of risk status for colon cancer among individuals in families that are segregating adenomatous polyposis.  相似文献   

3.
Interest in searching for genetic linkage between diseases and marker loci has been greatly increased by the recent introduction of DNA polymorphisms. However, even for the most well-behaved Mendelian disorders, those with clear-cut mode of inheritance, complete penetrance, and no phenocopies, genetic heterogeneity may exist; that is, in the population there may be more than one locus that can determine the disease, and these loci may not be linked. In such cases, two questions arise: (1) What sample size is necessary to detect linkage for a genetically heterogeneous disease? (2) What sample size is necessary to detect heterogeneity given linkage between a disease and a marker locus? We have answered these questions for the most important types of matings under specified conditions: linkage phase known or unknown, number of alleles involved in the cross at the marker locus, and different numbers of affected and unaffected children. In general, the presence of heterogeneity increases the recombination value at which lod scores peak, by an amount that increases with the degree of heterogeneity. There is a corresponding increase in the number of families necessary to establish linkage. For the specific case of backcrosses between disease and marker loci with two alleles, linkage can be detected at recombination fractions up to 20% with reasonable numbers of families, even if only half the families carry the disease locus linked to the marker. The task is easier if more than two informative children are available or if phase is known. For recessive diseases, highly polymorphic markers with four different alleles in the parents greatly reduce the number of families required.  相似文献   

4.
A susceptibility locus for migraine with aura, on chromosome 4q24   总被引:18,自引:0,他引:18  
Migraine is a complex neurovascular disorder with substantial evidence supporting a genetic contribution. Prior attempts to localize susceptibility loci for common forms of migraine have not produced conclusive evidence of linkage or association. To date, no genomewide screen for migraine has been published. We report results from a genomewide screen of 50 multigenerational, clinically well-defined Finnish families showing intergenerational transmission of migraine with aura (MA). The families were screened using 350 polymorphic microsatellite markers, with an average intermarker distance of 11 cM. Significant evidence of linkage was found between the MA phenotype and marker D4S1647 on 4q24. Using parametric two-point linkage analysis and assuming a dominant mode of inheritance, we found for this marker a maximum LOD score of 4.20 under locus homogeneity (P=.000006) or locus heterogeneity (P=.000011). Multipoint parametric (HLOD = 4.45; P=.0000058) and nonparametric (NPL(all) = 3.43; P=.0007) analyses support linkage in this region. Statistically significant linkage was not observed in any other chromosomal region.  相似文献   

5.
Gilles de la Tourette syndrome is a neuropsychiatric disorder with an autosomal dominant mode of inheritance and reduced penetrance at a single genetic locus. Several research groups have genetic linkage studies underway to detect the chromosomal location of the gene that predisposes for this disorder. Strong and clear evidence of linkage has not yet been produced for Tourette syndrome. This paper presents an overview of the methods and progress of the groups centered at Yale University and Erasmus University in excluding linkage from a large portion of the genome. Our labs have screened 228 genetic marker loci for linkage with a gene for this disorder in a series of affected families in the United States, Canada, The Netherlands, and Norway. More than 50% (and perhaps as much as 66%) of the autosomal genome has now been excluded on the assumption that genetic heterogeneity is not an important factor in the Tourette syndrome pedigrees pooled for this summary.  相似文献   

6.
Several methods have been proposed for linkage analysis of complex traits with unknown mode of inheritance. These methods include the LOD score maximized over disease models (MMLS) and the "nonparametric" linkage (NPL) statistic. In previous work, we evaluated the increase of type I error when maximizing over two or more genetic models, and we compared the power of MMLS to detect linkage, in a number of complex modes of inheritance, with analysis assuming the true model. In the present study, we compare MMLS and NPL directly. We simulated 100 data sets with 20 families each, using 26 generating models: (1) 4 intermediate models (penetrance of heterozygote between that of the two homozygotes); (2) 6 two-locus additive models; and (3) 16 two-locus heterogeneity models (admixture alpha = 1.0,.7,.5, and.3; alpha = 1.0 replicates simple Mendelian models). For LOD scores, we assumed dominant and recessive inheritance with 50% penetrance. We took the higher of the two maximum LOD scores and subtracted 0.3 to correct for multiple tests (MMLS-C). We compared expected maximum LOD scores and power, using MMLS-C and NPL as well as the true model. Since NPL uses only the affected family members, we also performed an affecteds-only analysis using MMLS-C. The MMLS-C was both uniformly more powerful than NPL for most cases we examined, except when linkage information was low, and close to the results for the true model under locus heterogeneity. We still found better power for the MMLS-C compared with NPL in affecteds-only analysis. The results show that use of two simple modes of inheritance at a fixed penetrance can have more power than NPL when the trait mode of inheritance is complex and when there is heterogeneity in the data set.  相似文献   

7.
Much debate has taken place over the mode(s) of inheritance of insulin-dependent diabetes mellitus (IDDM) and the possibility of etiological heterogeneity. We have analyzed the disease status (IDDM) and genetic marker (HLA-A/B haplotype) data from 61 multiple-case IDDM families ascertained through two registries in the Pittsburgh, Pennsylvania, area. Linkage analysis results were similar for five previously published simple models of transmission. No heterogeneity could be detected on the basis of the total sample or when the sample was categorized according to the proband's HLA-B or HLA-DR type. In contrast, categorizing the families by generation(s) of the affected individuals revealed differences in the linkage analysis results. Families with affected siblings only (N = 38) showed strong evidence for close linkage for all models. Families with a parent and siblings affected (N = 6) showed evidence against close linkage between HLA-B and IDDM for some models.  相似文献   

8.
Mild osteogenesis imperfecta (OI type I and OI type IV) is characterized by postnatal onset of fractures, absence of skeletal deformity, presenile hearing loss with or without blue sclerae, and dentinogenesis imperfecta. Using one common DNA polymorphism associated with the pro alpha 2(I) human collagen gene, we found genetic heterogeneity in this disorder. In three families, the OI phenotype segregated independently of the DNA polymorphism, whereas in one family, the OI phenotype cosegregated with a DNA polymorphism in a manner suggesting linkage. Use of DNA polymorphisms associated with both type I procollagen genes should provide a tool to unravel the molecular heterogeneity of various heritable disorders of the connective tissue.  相似文献   

9.
Heterogeneity, both inter- and intrafamilial, represents a serious problem in linkage studies of common complex diseases. In this study we simulated different scenarios with families who phenotypically have identical diseases but who genotypically have two different forms of the disease (both forms genetic). We examined the proportion of families displaying intrafamilial heterogeneity, as a function of mode of inheritance, gene frequency, penetrance, and sampling strategies. Furthermore, we compared two different ways of analyzing linkage in these data sets: a two-locus (2L) analysis versus a one-locus (SL) analysis combined with an admixture test. Data were simulated with tight linkage between one disease locus and a marker locus; the other disease locus was not linked to a marker. Our findings are as follows: (1) In contrast to what has been proposed elsewhere to minimize heterogeneity, sampling only "high-density" pedigrees will increase the proportion of families with intrafamilial heterogeneity, especially when the two forms are relatively close in frequency. (2) When one form is dominant and one is recessive, this sampling strategy will greatly decrease the proportions of families with a recessive form and may therefore make it more difficult to detect linkage to the recessive form. (3) An SL analysis combined with an admixture test achieves about the same lod scores and estimate of the recombination fraction as does a 2L analysis. Also, a 2L analysis of a sample of families with intrafamilial heterogeneity does not perform significantly better than an SL analysis. (4) Bilineal pedigrees have little effect on the mean maximum lod score and mean maximum recombination fraction, and therefore there is little danger that including these families will lead to a false exclusion of linkage.  相似文献   

10.
Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL.  相似文献   

11.
Most autosomal genetic causes of childhood-onset hypogammaglobulinemia are currently not well understood. Most affected individuals are simplex cases, but both autosomal-dominant and autosomal-recessive inheritance have been described. We performed genetic linkage analysis in consanguineous families affected by hypogammaglobulinemia. Four consanguineous families with childhood-onset humoral immune deficiency and features of autoimmunity shared genotype evidence for a linkage interval on chromosome 4q. Sequencing of positional candidate genes revealed that in each family, affected individuals had a distinct homozygous mutation in LRBA (lipopolysaccharide responsive beige-like anchor protein). All LRBA mutations segregated with the disease because homozygous individuals showed hypogammaglobulinemia and autoimmunity, whereas heterozygous individuals were healthy. These mutations were absent in healthy controls. Individuals with homozygous LRBA mutations had no LRBA, had disturbed B cell development, defective in vitro B cell activation, plasmablast formation, and immunoglobulin secretion, and had low proliferative responses. We conclude that mutations in LRBA cause an immune deficiency characterized by defects in B cell activation and autophagy and by susceptibility to apoptosis, all of which are associated with a clinical phenotype of hypogammaglobulinemia and autoimmunity.  相似文献   

12.
Congenital hypothyroidism affects 1/3000-4000 newborns and it has been estimated that 10-20% are familial cases with an autosomal recessive mode of inheritance. Previous studies of mostly individual cases have led to the identification of mutations in a number of genes, indicating that it is a genetically heterogeneous disease, but no major gene has been identified. In the present investigation, a population-based sample of 23 families with autosomal recessive congenital hypothyroidism, but no signs of goitre, were subject to linkage analysis. When markers located close to the thyroglobulin gene on chromosome 8q24 were used in a two-point analysis allowing for heterogeneity, a Z(max) of 4.10 was obtained with the microsatellite marker D8S557, indicating heterogeneity with 43% of the families being linked. A multipoint analysis using the markers D8S557 and D8S1835 gave a Z(max) of 3.51, assuming homogeneity. There was significant evidence of heterogeneity with 44.5% of the families being linked. The results indicate that a gene in 8q24 is a common cause of familial congenital hypothyroidism. Since thyroglobulin is essential for thyroid physiology, the gene encoding this protein is the obvious candidate for mutation analysis in the linked families.  相似文献   

13.
Autosomal dominant nocturnal frontal-lobe epilepsy (ADNFLE) is a recently identified partial epilepsy in which two different mutations have been described in the alpha4 subunit of the neuronal nicotinic acetylcholine receptor (CHRNA4). An additional seven families are presented in which ADNFLE is unlinked to the CHRNA4 region on chromosome 20q13.2. Seven additional sporadic cases showed no evidence of defective CHRNA4. One of the families showed evidence of linkage to 15q24, close to the CHRNA3/CHRNA5/CHRNB4 cluster (maximum LOD score of 3.01 with D15S152). Recombination between ADNFLE and CHRNA4, linkage to 15q24 in one family, and exclusion from 15q24 and 20q13.2 in others demonstrate genetic heterogeneity with at least three different genes for ADNFLE. The CHRNA4 gene and the two known CHRNA4 mutations are responsible for only a minority of ADNFLE. Although the ADNFLE phenotype is clinically homogeneous, there appear to be a variety of molecular defects responsible for this disorder, which will provide a challenge to the understanding of the basic mechanism of epileptogenesis.  相似文献   

14.
Machado Joseph disease (MJD) is a progressive, spinocerebellar ataxia (SCA) with an autosomal dominant mode of inheritance and almost complete penetrance. Clinically, it is difficult to distinguish it from other autosomal dominantly inherited ataxias, and it has been suggested that MJD may be caused by an allelic variant of SCA. Exclusion of MJD from the SCA1 locus on chromosome 6p has previously been demonstrated. However, following the recent assignment of a second locus for spinocerebellar ataxia (SCA2) to chromosome 12q in a large Cuban kindred of Spanish origin, we have investigated linkage in MJD families using the two markers, D12S58 and PLA2, that flank this disease gene. The MJD locus was definitively excluded from an interval spanning approximately 70 cM, which includes these loci. These studies demonstrate that MJD and SCA2 are genetically distinct despite similarities in disease phenotype and ancestral origins of the patients. Thus, the as yet unmapped MJD locus represents a third SCA locus, providing further evidence for genetic heterogeneity within these disorders.  相似文献   

15.
Tuberous sclerosis (TSC) is an autosomal dominant disorder with both neurological and cutaneous manifestations often resulting in significant disability. Although it has been studied clinically and biochemically for many years, the underlying pathophysiology remains unknown. Genetic linkage analysis provides an alternative strategy for understanding the genetic etiology of this disease. Genetic linkage of a gene for TSC to loci in 9q32-9q34 has been reported but has not been a universal finding, since absence of linkage to 9q loci, as well as linkage to loci on 11q, have also been reported. We present here data on 22 families (21 previously unreported) segregating TSC. Our results strongly support a TSC locus in the 9q32-34 region for approximately one-third of families and provide significant evidence for genetic heterogeneity. Application of newly described highly polymorphic dinucleotide repeat marker loci in TSC greatly enhanced the informativeness of our pedigrees and was vital for detecting the heterogeneity. No clear evidence of linkage to chromosome 11q22 markers was found, suggesting that a still unidentified TSC locus elsewhere in the genome may account for the majority of TSC families.  相似文献   

16.
Malignant hyperthermia susceptibility is a lethal autosomal dominant disorder of skeletal muscle metabolism that is triggered by all potent inhalation anesthetic gases. Recent linkage studies suggest a genetic locus for this disorder on 19q13.1. We have previously reported three unrelated families diagnosed with MHS that are unlinked to markers surrounding this locus on 19q13.1. In this report we extend these observations and present linkage studies on 16 MHS families. Four families (25%) were found linked to the region 19q12-q13.2 (Zmax = 2.96 with the ryanodine receptor at theta = 0.0). Five families (31%) were found closely linked to the anonymous marker NME1 (previously designated NM23) on chromosome 17q11.2-q24 (Zmax = 3.26 at theta = 0.0). Two families (13%) were clearly unlinked to either of these chromosomal regions. In five additional families, data were insufficient to determine their linkage status (they were potentially linked to two or more sites). The results of our heterogeneity analyses are consistent with the hypothesis that MHS can be caused in humans by any one of at least three distinct genetic loci. Furthermore, we provide preliminary linkage data suggesting the localization of a gene in human MHS to 17q11.2-q24 (MHS2), with a gene frequency of this putative locus approximately equal to that of the MHS1 locus on 19q.  相似文献   

17.
Seizures and psychosis are neuropsychiatric (NP) manifestations of a large number of systemic lupus erythematosus (SLE) patients. Since NP manifestations were part of the SLE phenotype for some, but not all SLE affecteds, we hypothesized that those SLE patient families with NP manifestations might be more genetically homogeneous at loci important to NP-related SLE, and hence have increased power to detect linkage. We identified 23 families of European-American (EA) origin and 20 families of African-American (AA) origin, in which at least one SLE patient in each family was diagnosed with the presence of NP manifestations. A total of 318 microsatellite markers at an average marker density of 11 cM were genotyped. Uncertainty of the genetic model led us to perform the initial genome scan by a multipoint non-parametric allele sharing linkage method. Once the evidence of linkage was suggestive, we then performed parametric model-based linkage by maximizing the relevant parameters to define a parsimonious genetic model. We found the maximum multipoint parametric LOD score was 5.19 and the non-parametric linkage score (Zlr) was 3.12 ( P=9x10(-4)) for EA NP pedigrees at 4p16, previously identified as SLEB3. The segregation behavior of this linked locus suggests a dominant mode of inheritance with an almost 100% homogeneous genetic effect in these pedigrees. The results demonstrated a significant increase of LOD score to detect SLEB3 when the families were further ascertained through NP, compared with the analysis of all EA SLE families together.  相似文献   

18.
IgA nephropathy (IgAN) is the most common glomerulonephritis worldwide, but its etiologic mechanisms are still poorly understood. Different prevalences among ethnic groups and familial aggregation, together with an increased familial risk, suggest important genetic influences on its pathogenesis. A locus for familial IgAN, called "IGAN1," on chromosome 6q22-23 has been described, without the identification of any responsible gene. The partners of the European IgAN Consortium organized a second genomewide scan in 22 new informative Italian multiplex families. A total of 186 subjects (59 affected and 127 unaffected) were genotyped and were included in a two-stage genomewide linkage analysis. The regions 4q26-31 and 17q12-22 exhibited the strongest evidence of linkage by nonparametric analysis (best P=.0025 and .0045, respectively). These localizations were also supported by multipoint parametric analysis, in which peak LOD scores of 1.83 ( alpha =0.50) and 2.56 ( alpha =0.65) were obtained using the affected-only dominant model, and by allowance for the presence of genetic heterogeneity. Our results provide further evidence for genetic heterogeneity among families with IgAN. Evidence of linkage to multiple chromosomal regions is consistent with both an oligo/polygenic and a multiple-susceptibility-gene model for familial IgAN, with small or moderate effects in determining the pathological phenotype. Although we identified new candidate regions, replication studies are required to confirm the genetic contribution to familial IgAN.  相似文献   

19.
Determining the mode of inheritance is often difficult under the best of circumstances, but when segregation analysis is used, the problems of ambiguous ascertainment procedures, reduced penetrance, heterogeneity, and misdiagnosis make mode-of-inheritance determinations even more unreliable. The mode of inheritance can also be determined using a linkage-based method (maximized maximum lod score or mod score) and association-based methods, which can overcome many of these problems. In this work, we determined how much information is necessary to reliably determine the mode of inheritance from linkage data when heterogeneity and reduced penetrance are present in the data set. We generated data sets under both dominant and recessive inheritance with reduced penetrance and with varying fractions of linked and unlinked families. We then analyzed those data sets, assuming reduced penetrance, both dominant and recessive inheritance, and no heterogeneity. We investigated the reliability of two methods for determining the mode of inheritance from the linkage data. The first method examined the difference (delta) between the maximum lod scores calculated under the two mode-of-inheritance assumptions. We found that if delta was > 1.5, then the higher of the two maximum lod scores reflected the correct mode of inheritance with high reliability and that a delta of 2.5 appeared to practically guarantee a correct mode-of-inheritance inference. Furthermore, this reliability appeared to be virtually independent of alpha, the fraction of linked families in the data set, although the reliability decreased slightly as alpha fell below .50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Breast cancer is known to have an inherited component, consistent in some families with autosomal dominant inheritance; in such families the disease often occurs in association with ovarian cancer. Previous genetic linkage studies have established that in some such families disease occurrence is linked to markers on chromosome 17q. This paper reports the results of a collaborative linkage study involving 214 breast cancer families, including 57 breast-ovarian cancer families; this represents almost all the known families with 17q linkage data. Six markers on 17q, spanning approximately 30 cM, were typed in the families. The aims of the study were to define more precisely the localization of the disease gene, the extent of genetic heterogeneity and the characteristics of linked families and to estimate the penetrance of the 17q gene. Under the assumption of no genetic heterogeneity, the strongest linkage evidence was obtained with D17S588 (maximum LOD score [Zmax] = 21.68 at female recombination fraction [theta f] = .13) and D17S579 (Zmax = 13.02 at theta f = .16). Multipoint linkage analysis allowing for genetic heterogeneity provided evidence that the predisposing gene lies between the markers D17S588 and D17S250, an interval whose genetic length is estimated to be 8.3 cM in males and 18.0 cM in females. This position was supported over other intervals by odds of 66:1. The location of the gene with respect to D17S579 could not be determined unequivocally. Under the genetic model used in the analysis, the best estimate of the proportion of linked breast-ovarian cancer families was 1.0 (lower LOD-1 limit 0.79). In contrast, there was significant evidence of genetic heterogeneity among the families without ovarian cancer, with an estimated 45% being linked. These results suggest that a gene(s) on chromosome 17q accounts for the majority of families in which both early-onset breast cancer and ovarian cancer occur but that other genes predisposing to breast cancer exist. By examining the fit of the linkage data to different penetrance functions, the cumulative risk associated with the 17q gene was estimated to be 59% by age 50 years and 82% by age 70 years. The corresponding estimates for the breast-ovary families were 67% and 76%, and those for the families without ovarian cancer were 49% and 90%; these penetrance functions did not differ significantly from one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号