首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid reaction studies presented herein show that ferredoxin:NADP+ oxidoreductase (FNR, EC 1.18.1.2) catalyzes electron transfer from spinach ferredoxin (Fd) to NADP+ via a ternary complex, Fd X FNR X NADP+. In the absence of NADP+, reduction of ferredoxin:NADP+ reductase by Fd was much slower than the catalytic rate: 37-80 s-1 versus at least 445 e-s-1; dissociation of oxidized spinach ferredoxin (Fdox) from one-electron reduced ferredoxin:NADP+ reductase (FNRsq) limited the reduction of FNR. This confirms the steady-state kinetic analysis of Masaki et al. (Masaki, R., Yoshikaya, S., and Matsubara, H. (1982) Biochim. Biophys. Acta 700, 101-109). Occupation of the NADP+ binding site of FNR by NADP+ or by 2',5'-ADP (a nonreducible NADP+ analogue) greatly increased the rate of electron transfer from Fd to FNR, releiving inhibition by Fdox. NADP+ (and 2',5'-ADP) probably facilitate the dissociation of Fdox; equilibrium studies have shown that nucleotide binding decreases the association of Fd with FNR (Batie, C. J. (1983) Ph.D. dissertation, Duke University; Batie, C. J., and Kamin, H. (1982) in Flavins and Flavoproteins VII (Massey, V., and Williams, C. H., Jr., eds) pp. 679-683, Elsevier, New York; Batie, C.J., and Kamin, H. (1982) Fed. Proc. 41, 888; and Batie, C.J., and Kamin, H. (1984) J. Biol. Chem. 259, 8832-8839). Premixing Fd with FNR was found to inhibit the reaction of the flavoprotein with NADP+ and with NADPH; thus, substrate binding may be ordered, NADP+ first, then Fd. FNRred and NADP+ very rapidly formed an FNRred X NADP+ complex with flavin to nicotinamide charge transfer bands. The Fdred X NADP+ complex then relaxed to an equilibrium species; the spectrum indicated a predominance of FNRox X NADPH charge-transfer complex. However, charge-transfer species were not observed during turnover; thus, their participation in catalysis of electron transfer from Fd to NADP+ remains uncertain. The catalytic rate of Fd to NADP+ electron transfer, as well as the rates of electron transfer from Fd to FNR, and from FNR to NADP+ were decreased when the reactants were in D2O; diaphorase activity was unaffected by solvent. On the basis of the data presented, a scheme for the catalytic mechanism of catalysis by FNR is presented.  相似文献   

2.
In higher plants ferredoxin (Fd):NADP(+) oxidoreductase (FNR) and Fd are each distributed in photosynthetic and non-photosynthetic organs as distinct isoproteins. We have cloned cDNAs for leaf FNR (L-FNR I and L-FNR II) and root FNR (R-FNR) from maize (Zea mays L.), and produced recombinant L-FNR I and R-FNR to study their enzymatic functions through kinetic and Fd-binding analyses. The K(m) value obtained by assay for a diaphorase activity indicated that R-FNR had a 10-fold higher affinity for NADPH than L-FNR I. When we assayed for NADPH-cytochrome c reductase activity using maize photosynthetic Fd (Fd I) and non-photosynthetic Fd (Fd III), the R-FNR showed a marked difference in affinity between these two Fd isoproteins; the K(m) for Fd III was 3.0 microM and that for Fd I was 29 microM. Consistent with this, the dissociation constant for the R-FNR:Fd III complex was 10-fold smaller than that of the R-FNR:Fd I complex. This differential binding capacity was confirmed by an affinity chromatography of R-FNR on Fd-sepharose with stronger binding to Fd III. L-FNR I showed no such differential interaction with Fd I and Fd III. These data demonstrated that R-FNR has the ability to discriminate between these two types of Fds. We propose that the stronger interaction of R-FNR with Fd III is crucial for an efficient electron flux of NADPH-FNR-Fd cascade, thus supporting Fd-dependent metabolism in non-photosynthetic organs.  相似文献   

3.
Fd:NADP+ oxidoreductase (FNR) is one of the key enzymes in photosynthetic electron transport. The gene petH encoding FNR of Synechococcus sp. PCC 7002 was cloned into the expressing vector pET-3 d' and overexpressed in E. coli. The amount of recombinant FNR (rFNR) was over 50% of the total cellular proteins. There were two forms of FNR activity, one is soluble and the other one was in the form of inclusion bodies. The soluble rFNR was purified through ion exchange chromatography and gel chromatography. The rFNR in the form of inclusion bodies was first solubilized with 6.7 mol/L urea, and then refolded into the active form in the presence of flavin adenine dinucleotide (FAD). Further purification was performed by ion exchange chromatography. The rFNR pmified from either form of the expressed product had the maximum absorption spectrum as that of the natural FNR from cyanobacteria, whose maximum absorption was at 273, 385 and 456 ran respectively. N-tenninal sequencing showed that rFNR was indeed a product of petH gene expression, rFNR could catalyze the electron transport from P700 to NADP+ in the presence of ferredoxin. The optimal pH for diaphorase activity of rFNR was 8.0 and the optimal temperature was 30 ℃.  相似文献   

4.
Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd:FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductase and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.  相似文献   

5.
The small, soluble, (2Fe-2S)-containing protein ferredoxin (Fd) mediates electron transfer from the chloroplast photosystem I to ferredoxin: NADP+ oxidoreductase (FNR), a flavoenzyme located on the stromal side of the thylakoid membrane. Ferredoxin and FNR form a 1:1 complex, which is stabilized by electrostatic interactions between acidic residues of Fd and basic residues of FNR. We have used differential chemical modification of Fd to locate aspartic and glutamic acid residues at the intermolecular interface of the Fd:FNR complex (both proteins from spinach). Carboxyl groups of free and FNR-bound Fd were amidated with carbodiimide/2-aminoethane sulfonic acid (taurine). The differential reactivity of carboxyl groups was assessed by double isotope labeling. Residues protected in the Fd:FNR complex were D-26, E-29, E-30, D-34, D-65, and D-66. The protected residues belong to two domains of negative electrostatic surface potential on either side of the iron-sulfur cluster. The negative end of the molecular dipole moment vector of Fd (377 Debye) is close to the iron-sulfur cluster, in the center of the area demarcated by the protected carboxyl groups. The molecular dipole moment and the asymmetric surface potential may help to orient Fd in the reaction with FNR. In support, we find complementary domains of positive electrostatic potential on either side of the FAD redox center of FNR. The results allow a binding model for the Fd:FNR complex to be constructed.  相似文献   

6.
Utilization of electrons from the photosynthetic water splitting reaction for the generation of biofuels, commodities as well as application in biotransformations requires a partial rerouting of the photosynthetic electron transport chain. Due to its rather negative redox potential and its bifurcational function, ferredoxin at the acceptor side of Photosystem 1 is one of the focal points for such an engineering. With hydrogen production as model system, we show here the impact and potential of redox partner design involving ferredoxin (Fd), ferredoxin-oxido-reductase (FNR) and [FeFe]?hydrogenase HydA1 on electron transport in a future cyanobacterial design cell of Synechocystis PCC 6803. X-ray-structure-based rational design and the allocation of specific interaction residues by NMR-analysis led to the construction of Fd- and FNR-mutants, which in appropriate combination enabled an about 18-fold enhanced electron flow from Fd to HydA1 (in competition with equimolar amounts of FNR) in in vitro assays. The negative impact of these mutations on the Fd-FNR electron transport which indirectly facilitates H2 production (with a contribution of ≤42% by FNR variants and ≤23% by Fd-variants) and the direct positive impact on the Fd-HydA1 electron transport (≤23% by Fd-mutants) provide an excellent basis for the construction of a hydrogen-producing design cell and the study of photosynthetic efficiency-optimization with cyanobacteria.  相似文献   

7.
In the ferredoxin-NADP(+) reductase (FNR)/ferredoxin (Fd) system, an aromatic amino acid residue on the surface of Anabaena Fd, Phe-65, has been shown to be essential for the electron transfer (ET) reaction. We have investigated further the role of hydrophobic interactions in complex stabilization and ET between these proteins by replacing three hydrophobic residues, Leu-76, Leu-78, and Val-136, situated on the FNR surface in the vicinity of its FAD cofactor. Whereas neither the ability of FNR to accept electrons from NADPH nor its structure appears to be affected by the introduced mutations, different behaviors with Fd are observed. Thus, the ET interaction with Fd is almost completely lost upon introduction of negatively charged side chains. In contrast, only subtle changes are observed upon conservative replacement. Introduction of Ser residues produces relatively sizable alterations of the FAD redox potential, which can explain the modified behavior of these mutants. The introduction of bulky aromatic side chains appears to produce rearrangements of the side chains at the FNR/Fd interaction surface. Thus, subtle changes in the hydrophobic patch influence the rates of ET to and from Fd by altering the binding constants and the FAD redox potentials, indicating that these residues are especially important in the binding and orientation of Fd for efficient ET. These results are consistent with the structure reported for the Anabaena FNR.Fd complex.  相似文献   

8.
Ferredoxin (Fd) and ferredoxin:NADP(+) reductase (FNR) from Anabaena function in photosynthetic electron transfer (et). The et interaction between the FNR charge-reversal mutant E139K and Fd at 12 mM ionic strength (mu) is extremely impaired relative to the reaction with wt FNR, and the dependency of k(obs) on E139K concentration shows strong upward curvature at protein concentrations > or = 10 microM. However, at values of mu > or = 200 mM, reaction rates approach those of wild-type FNR, and normal saturation kinetics are observed. For the E139Q mutant, which is also significantly impaired in its et interaction with Fd at low FNR concentrations and low mu values, the dependency of k(obs) on E139Q concentration shows a smaller degree of upward curvature at mu = 12 and 100 mM and shows saturation kinetics at higher values of mu. wt FNR and the E139D mutant both show a slight amount of upward curvature at FNR concentrations >30 microM at mu = 12 mM but show the expected saturation kinetics at higher values of mu. These results are explained by a mechanism in which the mutual orientation of the proteins in the complex formed at low ionic strength with the E139K mutant is so far from optimal that it is almost unreactive. At increased E139K concentrations, the added mutant FNR reacts via a collisional interaction with the reduced Fd present in the unreactive complex. The et reactivity of the low ionic strength complexes depends on the particular amino acid substitution, which via electrostatic interactions alters the specific geometry of the interface between the two proteins. The presence of a negative charge at position 139 of FNR allows the most optimal orientations for et at ionic strengths below 200 mM.  相似文献   

9.
All oxygenic photosynthetically derived reducing equivalents are utilized by combinations of a single multifuctional electron carrier protein, ferredoxin (Fd), and several Fd-dependent oxidoreductases. We report the first crystal structure of the complex between maize leaf Fd and Fd-NADP(+) oxidoreductase (FNR). The redox centers in the complex--the 2Fe-2S cluster of Fd and flavin adenine dinucleotide (FAD) of FNR--are in close proximity; the shortest distance is 6.0 A. The intermolecular interactions in the complex are mainly electrostatic, occurring through salt bridges, and the interface near the prosthetic groups is hydrophobic. NMR experiments on the complex in solution confirmed the FNR recognition sites on Fd that are identified in the crystal structure. Interestingly, the structures of Fd and FNR in the complex and in the free state differ in several ways. For example, in the active site of FNR, Fd binding induces the formation of a new hydrogen bond between side chains of Glu 312 and Ser 96 of FNR. We propose that this type of molecular communication not only determines the optimal orientation of the two proteins for electron transfer, but also contributes to the modulation of the enzymatic properties of FNR.  相似文献   

10.
The malaria parasite possesses plant-type ferredoxin (Fd) and ferredoxin-NADP(+) reductase (FNR) in a plastid-derived organelle called the apicoplast. This Fd/FNR redox system, which potentially provides reducing power for essential biosynthetic pathways in the apicoplast, has been proposed as a target for the development of specific new anti-malarial agents. We studied the molecular interaction of Fd and FNR of human malaria parasite (Plasmodium falciparum), which were produced as recombinant proteins in Escherichia coli. NMR chemical shift perturbation analysis mapped the location of the possible FNR interaction sites on the surface of P. falciparum Fd. Site-specific mutation of acidic Fd residues in these regions and the resulting analyses of electron transfer activity and affinity chromatography of those mutants revealed that two acidic regions (a region including Asp26, Glu29 and Glu34, and the other including Asp65 and Glu66) dominantly contribute to the electrostatic interaction with P. falciparum FNR. The combination of Asp26/Glu29/Glu34 conferred a larger contribution than that of Asp65/Glu66, and among Asp26, Glu29 and Glu34, Glu29 was shown to be the most important residue for the interaction with P. falciparum FNR. These findings provide the basis for understanding molecular recognition between Fd and FNR of the malaria parasite.  相似文献   

11.
Reduced flavodoxin I (Fld1) is required in Escherichia coli for reductive radical generation in AdoMet-dependent radical enzymes and reductive activation of cobalamin-dependent methionine synthase. Ferredoxin (Fd) and flavodoxin II (Fld2) are also present, although their precise roles have not been ascertained. Ferredoxin (flavodoxin):NADP+ oxidoreductase (FNR) was discovered in E. coli as an NADPH-dependent reductant of Fld1 that facilitated generation of active methionine synthase in vitro; FNR and Fld1 will also supply electrons for the reductive cleavage of AdoMet essential for generating protein or substrate radicals in pyruvate formate-lyase, class III ribonucleotide reductase, biotin synthase, and, potentially, lipoyl synthase. As part of ongoing efforts to understand the various redox pathways that will support AdoMet-dependent radical enzymes in E. coli, we have examined the relative specificity of E. coli FNR for Fd, Fld1, and Fld2. While FNR will reduce all three proteins, Fd is the kinetically and thermodynamically preferred partner. Fd binds to FNR with high affinity (K(d)相似文献   

12.
The influence of electrostatic forces on the formation of, and electron transfer within, transient complexes between redox proteins was examined by comparing ionic strength effects on the kinetics of the electron transfer reaction between reduced ferredoxins (Fd) and oxidized ferredoxin-NADP+ reductases (FNR) from Anabaena and from spinach, using laser flash photolysis techniques. With the Anabaena proteins, direct reduction by laser-generated flavin semiquinone of the FNR component was inhibited by complex formation at low ionic strength, whereas Fd reduction was not. The opposite results were obtained with the spinach system. These observations clearly indicate structural differences between the cyanobacterial and higher plant complexes. For the complex formed by the Anabaena proteins, the results indicate that electrostatic forces are not a major contributor to complex stability. However, the rate constant for intracomplex electron transfer had a biphasic dependence on ionic strength, suggesting that structural rearrangements within the transient complex facilitate electron transfer. In contrast to the Anabaena complex, electrostatic forces are important for the stabilization of the spinach Fd:FNR complex, and changes in ionic strength had little effect on the limiting rate constant for intracomplex electron transfer. This suggests that in this case the geometry of the initial collisional complex is optimal for reaction. These results provide a clear illustration of the differing roles that electrostatic interactions may play in controlling electron transfer between two redox proteins.  相似文献   

13.
The three-dimensional structures of K72E, K75R, K75S, K75Q, and K75E Anabaena Ferredoxin-NADP+ reductase (FNR) mutants have been solved, and particular structural details of these mutants have been used to assess the role played by residues 72 and 75 in optimal complex formation and electron transfer (ET) between FNR and its protein redox partners Ferredoxin (Fd) and Flavodoxin (Fld). Additionally, because there is no structural information available on the interaction between FNR and Fld, a model for the FNR:Fld complex has also been produced based on the previously reported crystal structures and on that of the rat Cytochrome P450 reductase (CPR), onto which FNR and Fld have been structurally aligned, and those reported for the Anabaena and maize FNR:Fd complexes. The model suggests putative electrostatic and hydrophobic interactions between residues on the FNR and Fld surfaces at the complex interface and provides an adequate orientation and distance between the FAD and FMN redox centers for efficient ET without the presence of any other molecule as electron carrier. Thus, the models now available for the FNR:Fd and FNR:Fld interactions and the structures presented here for the mutants at K72 and K75 in Anabaena FNR have been evaluated in light of previous biochemical data. These structures confirm the key participation of residue K75 and K72 in complex formation with both Fd and Fld. The drastic effect in FNR activity produced by replacement of K75 by Glu in the K75E FNR variant is explained not only by the observed changes in the charge distribution on the surface of the K75E FNR mutant, but also by the formation of a salt bridge interaction between E75 and K72 that simultaneously "neutralizes" two essential positive charged side chains for Fld/Fd recognition.  相似文献   

14.
Ferredoxin:NADP+:reductase (FNR) catalyzes one terminal step of the conversion of light energy into chemical energy during photosynthesis. FNR uses two high energy electrons photoproduced by photosystem I (PSI) and conveyed, one by one, by a ferredoxin (Fd), to reduce NADP+ to NADPH. The reducing power of NADPH is finally involved in carbon assimilation. The interaction between oxidized FNR and Fd was studied by crystallography at 2.4 Å resolution leading to a three-dimensional picture of an Fd–FNR biologically relevant complex. This complex suggests that FNR and Fd specifically interact prior to each electron transfer and disassemble upon a redox-linked conformational change of the Fd.  相似文献   

15.
Ferredoxin (Fd) interacts with ferredoxin-NADP(+) reductase (FNR) to transfer two electrons to the latter, one by one, which will finally be used to reduce NADP(+) to NADPH. The formation of a transient complex between Fd and FNR is required for the electron transfer (ET), and extensive mutational and crystallographic studies have been reported to characterize such protein-protein interaction. However, some aspects of the association mechanism still remain unclear. Moreover, in spite of their structural differences, flavodoxin (Fld) can replace Fd in its function and interact with FNR to transfer electrons with only slightly lower efficiency. Although crystallographic structures for the FNR:Fd association have been reported, experimental structural data for the FNR:Fld interaction are highly elusive. We have modeled here the interactions between FNR and both of its protein partners, Fd and Fld, using surface energy analysis, computational rigid-body docking simulations, and interface side-chain refinement. The results, consistent with previous experimental data, suggest the existence of alternative binding modes in these ET proteins.  相似文献   

16.
Cyanobacterial PetH is similar to ferredoxin-NADP+ oxidoreductase (FNR) of higher plants and comprises 2 components, CpcD-like rod linker and FNR proteins. Here, I show that PetH controls the rate of the interaction with PetF (ferredoxin [Fd1]). Purified recombinant PetH protein, which cut off a CpcD-like rod linker domain, and Fd1 were used in detailed surface plasmon resonance analyses. The interaction between FNR and Fd1 chiefly involved extremely fast binding and dissociation reactions and the FNR affinity for Fd1 was stronger than the Fd1 affinity for FNR. The dissociation constant values were determined as approximately 93.65 μM (FNR) for Fd1 and 1.469 mM (Fd1) for FNR.  相似文献   

17.
Plant-type ferredoxin (Fd), a [2Fe-2S] iron-sulfur protein, functions as an one-electron donor to Fd-NADP(+) reductase (FNR) or sulfite reductase (SiR), interacting electrostatically with them. In order to understand the protein-protein interaction between Fd and these two different enzymes, 10 acidic surface residues in maize Fd (isoform III), Asp-27, Glu-30, Asp-58, Asp-61, Asp-66/Asp-67, Glu-71/Glu-72, Asp-85, and Glu-93, were substituted with the corresponding amide residues by site-directed mutagenesis. The redox potentials of the mutated Fds were not markedly changed, except for E93Q, the redox potential of which was more positive by 67 mV than that of the wild type. Kinetic experiments showed that the mutations at Asp-66/Asp-67 and Glu-93 significantly affected electron transfer to the two enzymes. Interestingly, D66N/D67N was less efficient in the reaction with FNR than E93Q, whereas this relationship was reversed in the reaction with SiR. The static interaction of the mutant Fds with each the two enzymes was analyzed by gel filtration of a mixture of Fd and each enzyme, and by affinity chromatography on Fd-immobilized resins. The contributions of Asp-66/Asp-67 and Glu-93 were found to be most important for the binding to FNR and SiR, respectively, in accordance with the kinetic data. These results allowed us to map the acidic regions of Fd required for electron transfer and for binding to FNR and SiR and demonstrate that the interaction sites for the two enzymes are at least partly distinct.  相似文献   

18.
During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6f complex, ATP synthase and several isoforms of ferredoxin‐NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6f complex, FNR and redox‐inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6f complex during cyclic electron transport in chloroplasts.  相似文献   

19.
During the evolution of higher-plant root and leaf-type-specific Fd : FNR complexes from an original cyanobacterial type progenitor, rearrangement of molecular interaction has altered the relative orientation of prosthetic groups and there have been changes in complex induced conformational change. Selection has presumably worked on mutation of residues responsible for interaction between the two proteins, favoring optimized electron flow in a specific direction, and efficient dissociation following specific oxidation of leaf Fd and reduction of root Fd. Major changes appear to be: loss in both leaf and root complexes of a cyanobacterial mechanism that ensures Fd dissociation from the complex following change in Fd redox state, development of a structural rearrangement of Fd on binding to leaf FNR that results in a negative shift in Fd redox potential favorable to photosynthetic electron flow, creation of a vacant space in the root Fd:FNR complex that may allow access to the redox centers of other enzymes to ensure efficient channeling of heterotrophic reductant into bioassimilation. Further structural analysis is essential to establish how root type FNR distinguishes between Fd isoforms, and discover how residues not directly involved in intermolecular interactions may affect complex formation.  相似文献   

20.
The human malaria parasite (Plasmodium falciparum) possesses a plastid-derived organelle called the apicoplast, which is believed to employ metabolisms crucial for the parasite's survival. We cloned and studied the biochemical properties of plant-type ferredoxin (Fd) and Fd-NADP+ reductase (FNR), a redox system that potentially supplies reducing power to Fd-dependent metabolic pathways in malaria parasite apicoplasts. The recombinant P. falciparum Fd and FNR proteins were produced by synthetic genes with altered codon usages preferred in Escherichia coli. The redox potential of the Fd was shown to be considerably more positive than those of leaf-type and root-type Fds from plants, which is favourable for a presumed direction of electron flow from catabolically generated NADPH to Fd in the apicoplast. The backbone structure of P. falciparum Fd, as solved by X-ray crystallography, closely resembles those of Fds from plants, and the surface-charge distribution shows several acidic regions in common with plant Fds and some basic regions unique to this Fd. P. falciparum FNR was able to transfer electrons selectively to P. falciparum Fd in a reconstituted system of NADPH-dependent cytochrome c reduction. These results indicate that an NADPH-FNR-Fd cascade is operative in the apicoplast of human malaria parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号