首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At irregular intervals of 2 to 10 years the aseasonal tropical rain forests in west Malesia come into heavy mass flowering, followed by mast fruiting. During a heavy flowering almost half the mature individuals and over 80% of the canopy and emergent tree Species in a forest may flower. This involves over 200 tree species in a forest flowering over a short period of 3–4 months. The pollination needs during a mass flowering appears to be overcome in several ways. A rapid increase in the number of pollinators seems to occur in the forest. This is partly caused by the migration of pollinators from the fringes of the forest to forage on the superabundance of flowers. At the same time, some groups of plants which share common pollinators appear to reduce pollinator competition by flowering in interspecific sequence. Many members of the family Dipterocarpaceae have evolved sequential flowering too. They also share unique pollinators, common flower thrips which appear to build up rapidly in numbers by feeding and breeding on the millions of dipterocarp flower buds which are present several weeks before the flowering. The environmental cue for this irregular, but widespread mass flowering can be traced to a small dip of about 2° C below mean night-time temperature for 4 or 5 nights. The conditions for such temperature drops occur during El Nino events.  相似文献   

2.
Abstract We investigated the effects of forest patch size on the behaviour of birds feeding on the flower nectar of the proteaceous tree Embothrium coccineum J. R. et G. Forster, which is typically restricted to forest edges in agricultural landscapes in southern Chile. We quantified reproductive parameters of trees (no. inflorescences per branch, total and open flowers per inflorescence) in forest fragments varying from 1 ha (small), to 20 ha (medium) and to >150 ha (large), and in remnant trees in pastures. Visits to flowers by nectar‐feeding birds were recorded during 30‐min observation periods, spread throughout the day during two flowering seasons, November 1992 and 1993 (n = 242 periods overall). Aggressive encounters among flower visitors were recorded in 1992. We expected less visits to trees in pastures and small forest patches because abundances of Embothrium's main pollinators, the flycatcher Elaenia albiceps and the hummingbird Sephanoides sephaniodes, decreased in smaller patches. We found, however, that pollinator visiting rates were negatively correlated with forest patch area and were highest for pasture trees. This trend was largely due a decline in the number of visits by E. albiceps, the main flower visitor, in larger patches. Hummingbird visits did not change with forest patch size. Lower visitation rates to flowering trees in larger forest fragments seemed to be a consequence of territorial defence by E. albiceps and were unrelated to differences in floral display.  相似文献   

3.
Animal pollination in a warm temperate evergreen broad-leaved forest was observed on Yaku-shima Island, south of Kyushu, Japan. Three groups of plants were categorized: canopy-flowering tree species, understory-flowering tree species, and climber and epiphyte species. Each of these formed different pollination systems. The canopy-flowering tree species had shallow, dish-shaped flowers and utilized various types of opportunistic pollinators. Most of the climber and epiphyte species had deep, tube-shaped flowers and specialized pollinators, although some climber species which bloomed in the canopy especially in winter, had opportunistic pollinators. The understory-flowering tree species had large dish- or funnel-shaped flowers and endothermic pollinators able to tolerate the dark and cold conditions under the canopy. The individual trees of canopy-flowering tree species produced large numbers of flowers simultaneously (mass-flowering) and had a well synchronized flowering period. Each canopy-flowering tree species segregated its flowering time from those of the anothers. Climber and epiphyte species and most of the understory-flowering tree species produced small numbers of flowers sequentially (extended flowering) and showed a long flowering period.  相似文献   

4.
In Southeast Asian tropical rainforests, two events, severe droughts associated with the El Ni?o-Southern Oscillation and general flowering, a type of community-wide mass flowering, occur at irregular, supra-annual intervals. The relationship between these two supra-annual events and patterns of insect population fluctuations has yet to be clearly elucidated. Leaf beetles (Chrysomelidae) are major herbivores and flower-visitors of canopy trees, affecting their growth and reproduction and, in turn, affected by tree phenology; but their population fluctuations in the Southeast Asian tropics have not been extensively investigated. We examined population fluctuation patterns of the 34 most dominant chrysomelid species in relation to the two supra-annual events by conducting monthly light-trapping over seven years in a lowland dipterocarp forest in Borneo. Our results showed large community variation in population fluctuation patterns and a supra-annual (between-year) variation in abundance for most of the dominant chrysomelids that was significantly larger than the annual (within-year) variation. Specifically, in response to a severe drought in 1998, chrysomelid species exhibited different population responses. These results show that population fluctuations of individual species, rather than the entire assemblage, must be analyzed to determine the effects of changes in environmental conditions on the structure of insect assemblages in the tropics, especially in regions where supra-annual environmental changes are relatively more important than seasonal changes.  相似文献   

5.
Foraging affects survival and reproductive success in animals, including flower-visiting insects. Plant-derived floral food resources (i.e. nectar and pollen) may be rapidly changing in space and time and pollinators may need to quickly switch to new resources. Butterflies are suitable model organisms to investigate foraging behaviour of insect pollinators, because they can be easily monitored under natural conditions. We studied flower visitation patterns in the Clouded Apollo butterfly Parnassius mnemosyne in relation to the abundance of available floral resources. We recorded flower visitation daily in individually marked butterflies, listed flowering species and estimated flower abundance categories every 3 days in a single meadow, during five consecutive flight periods. Butterflies visited 35 nectar plants from the 71 species available. Few nectar plants were frequently visited (visit ratios for the annually most visited species: 37–60%), many were scarcely visited and no visits were observed on several abundant species. Flower abundance and visit ratio varied among years and within flight periods. The number of visits increased with flower abundance in the seven most frequently visited plant species, but not in the occasionally visited ones. Beside their choosiness, Parnassius mnemosyne butterflies were able to adjust foraging behaviour to rapidly changing resource distributions. Diet selectivity in adults might increase the vulnerability of this species. However, visitation plasticity may mitigate the effect of the lack of some nectar plants, as complementary resources can be used as alternatives.  相似文献   

6.
It has been controversial how extensively ants contribute to pollination, and we evaluated the contribution of the Japanese carpenter ant, Camponotus japonicus, to the pollination of an orchid, Epipactis thunbergii. Two-year field studies revealed that (1) the ant workers foraged even in cool/cloudy conditions and accordingly visited orchid flowers more frequently (about 40% of all the visitors) than hover flies, the principle pollinators (10–20%), and that (2) the flower-visiting ants occasionally removed pollinia from the anther and then delivered pollen onto the stigmatic surface of other flowers, although self-pollination might frequently occur in the consecutive visits of flowers within an inflorescence. An artificial pollination experiment with pollinia which had been transferred to the ant integument showed that (3) the treated flowers produced as many fruits and seeds as control flowers. We concluded that C. japonicus workers could actually pollinate E. thunbergii flowers and their relative importance as pollinators appeared to be largely dependent on the abundance of flower-visiting workers or weather conditions during the flowering period, which mainly determined the availability of hover flies.  相似文献   

7.
Fluctuations in the incidence and amount of post-bloom fruit drop disease of citrus caused by Colletotrichum gloeosporioides in Belize prevent economic disease control. During the cooler drier months of the year when blossom infection is common there are variations in the incidence of rainfall and associated climatic parameters, and in the pattern of flowering. Large amounts of disease develop when periods of rain followed by prolonged wetness occur during peak blossoming periods. Blossoms are most susceptible during the open flower stage and infection of terminal flowers invariably results in infection of all other flowers on the spike. Disease incidence is greater in the lower parts of the trees, but flowering is greater in the upper regions. Large numbers of Colletotrichum spores are produced during wet conditions from apparently healthy leaves and from diseased flowers, but these rapidly lose viability when dried. Few spores are produced from old persistent calices (buttons). Although spores from leaves were a less potent inoculum source than those from flowers, they could provide the initial inoculum to commence flower infection when blossoming starts.  相似文献   

8.
Charles L. Aker 《Oecologia》1982,54(2):243-252
Summary A field investigation of the mutualistic interaction between a monocarpic perennial plant, Yucca whipplei, and its host-specific pollinator and seed predator, Tegeticula maculata (Lepidoptera: Prodoxidae), was conducted to determine how the resource utilization pattern and population dynamics of the pollinator have influenced the evolution of the flowering and fruiting pattern of the plant. Although the temporal pattern of emergence of pollinators results in a relatively close tracking of flower abundance within a season, the ratio of pollinators to open flowers does vary significantly within a season, as well as between seasons. At any point in time during the flowering season, the population of adult yucca moths is distributed evenly among the available flowers, so that the number of pollinators on an inflorescence is directly proportional to the number of open flowers available. The relative isolation of individual flowering plants appears to have little effect on the distribution of pollinators among inflorescences. The number of fruits initiated on a plant is directly proportional to the number of flowers produced, and is also partially determined by the time of flowering. Yucca whipplei always produces many more flowers than fruits. Most flowers are not fertilized, and the plants also generally abort and abscise immature fruits after flowering. Fruit production of at least some plants, however, appeared limited by pollination. It is also expected that in some years the relative abundance of pollinators will be low enough that most plants will be pollinator-limited. It is suggested that the pattern of flowering and fruiting of this species has evolved in response to the unpredictability of pollinator availability, both within and between seasons. Resource uncertainty and selection acting on the male component of fitness may also be involved.  相似文献   

9.
The insect pollination of an alpine plant community consisting of herbs and shrubs, was observed on Mt. Kisokoma-ga-take, central Honshu, Japan. There were two main groups of pollinators, syrphid flies and bumble bees. Although some shrubs were visited by both types of insects, other shrubs and the herbs were visited by either syrphid flies or bumble bees. Two types of herbs categorized by the difference of flower-visiting insects, the Syrphid-type and the Bombus-type, exhibited some clearly contrasting ecological characteristics such as the flowering behavior of individual plants, spatial distribution of the plant populations and segregation of flowering phenology at the community level. The Syrphid-type herbs were densely distributed throughout wide areas in the tall herb stand, and all the flowers borne by an individual plant bloomed simultaneously. Each species did not markedly segregate its flowering time from that of other species of the same type. The Bombus-type herbs were distributed locally and/or at low density, and the individual flowers borne by an individual plant showed staggered flowering times. Each species had a more strictly segregated flowering time. These ecological characteristics of these two flower types seemed to be related to the behavioral characteristics of their pollinators.  相似文献   

10.
M. N. Melampy 《Oecologia》1987,73(2):293-300
Summary In the eastern Andes of Colombia, the shrub Befaria resinosa (Ericaceae) has peaks of flowering that are separated by extended periods of low flower production. The effect that these fluctuations in flower production have on pollen flow was investigated by using fluorescent dye as a pollen analog. Dye applied to open flowers was dispersed over long distances more often during low flower production than during high flower production. Whether enhanced pollen dispersal during flowering lows is of benefit to individual plants is not clear. The proportion of flowers that set fruit is positively correlated with flower abundance, negating the possibility that increased pollen dispersal results in a higher rate of fruit production due to outbreeding effects. It is also difficult to attribute the pattern of fruit production to changes in pollinator visitation rates, which are negatively correlated with flower abundance in the case of hummingbirds and not correlated at all with flower abundance in the case of insects. An opportunistic, large-bodied hummingbird (Colibri coruscans) visits B. resinosa during high flowering and may be a particularly effective pollinator, accounting for some of the increase in the proportion of flowers setting fruit. Rainfall is positively correlated with flower production and may be an important factor in shaping flowering phenology, but it is not significantly correlated with the proportion of flowers setting fruits. The possibility that low-level flowering may counteract inbreeding that results from peak flowering is discussed.  相似文献   

11.
Invasive alien plants can compete with native plants for resources, and may ultimately decrease native plant diversity and/or abundance in invaded sites. This could have consequences for native mutualistic interactions, such as pollination. Although invasive plants often become highly connected in plant-pollinator interaction networks, in temperate climates they usually only flower for part of the season. Unless sufficient alternative plants flower outside this period, whole-season floral resources may be reduced by invasion. We hypothesized that the cessation of flowering of a dominant invasive plant would lead to dramatic, seasonal compositional changes in plant-pollinator communities, and subsequent changes in network structure. We investigated variation in floral resources, flower-visiting insect communities, and interaction networks during and after the flowering of invasive Rhododendron ponticum in four invaded Irish woodland sites. Floral resources decreased significantly after R. ponticum flowering, but the magnitude of the decrease varied among sites. Neither insect abundance nor richness varied between the two periods (during and after R. ponticum flowering), yet insect community composition was distinct, mostly due to a significant reduction in Bombus abundance after flowering. During flowering R. ponticum was frequently visited by Bombus; after flowering, these highly mobile pollinators presumably left to find alternative floral resources. Despite compositional changes, however, network structural properties remained stable after R. ponticum flowering ceased: generality increased, but quantitative connectance, interaction evenness, vulnerability, H’2 and network size did not change. This is likely because after R. ponticum flowering, two to three alternative plant species became prominent in networks and insects increased their diet breadth, as indicated by the increase in network-level generality. We conclude that network structure is robust to seasonal changes in floral abundance at sites invaded by alien, mass-flowering plant species, as long as alternative floral resources remain throughout the season to support the flower-visiting community.  相似文献   

12.
Continually flowering plants bloom continuously throughout the year, as often seen in plants distributed along the roadsides or in the understory layers in Southeast Asia's tropical rain forests. Dillenia suffruticosa (Griff. ex Hook. f. & Thomson) Martelli (Dilleniaceae) is one such continually flowering shrub that flowers during periods of community‐wide mass flowering, general flowering (GF), and non‐GF. During irregularly occurring GF periods, when species of all forest layers flower synchronously for several months, some pollinators migrate to the canopy layer, where GF promotes the pollination success of participating plants. Continually flowering plants share the available pollinator community with GF plants, and the reproductive success of continually flowering plants may be affected during the GF period. To assess the effects of GF on the reproductive success of a diverse range of continually flowering plants, we examined the differences in pollinator density and reproductive success between GF and non‐GF periods in D. suffruticosa at four different research sites. Although the seed set differed among the four research sites, pollinator density and fruit set did not differ between GF and non‐GF periods or research sites. Our results suggest that the reproductive success of D. suffruticosa was maintained at an approximately constant level, regardless of the flowering phenology of the canopy layer or other vegetation components.  相似文献   

13.
It is controversial the role played by Meliponina bees in the pollination of mass flowering trees with small generalized flowers (FMPG), very common group of trees in the tropical forest canopy. The species richness and relative abundance of flower visiting insects of the mass flowering tree Stryphnodendron pulcherrimum were measured to test the hypothesis of tight ecological association between these generalist bees and FMPG and to evaluate the effect of this relationship upon the reproductive success variation among tree crowns. The flower visiting insects were sampled on 10 flowering tree crowns at the Atlantic Rainforest in southern Bahia. Altogether, 553 visiting insects were collected during the flowering period of S. pulcherrimum: 293 (52%) Meliponina bees out of 438 bees (79.4%). All tree crowns were visited by Meliponina, with the proportion of these bees ranging from 27% to 87%. The tight ecological association between FMPG trees and Meliponina bees is supported by the observed pattern of spatial relationship. Both the relationship between variation of fruit set among tree crowns and species richness (r = 0.3579; P = 0.3098) or relative abundance (r = 0.3070; P = 0.3881) of Meliponina were not statistically significant. Likely a threshold of minimum relative abundance combined with the absolute abundance of these bees explain the fruit set variation among tree crowns of S. pulcherrimum, even by self-pollination. We tested this assumption with a preliminary analysis of Melipona bee genera distribution among the tree crowns.  相似文献   

14.
Pollination and seed predation were studied in Silene vulgaris populations during two seasons, one with much lower pollinator abundance than the other. Among the pollinators, noctuid moths of the genus Hadena also acted as seed predators. Nectar-foraging female moths oviposited in flowers, and their larvae consumed flowers and seed capsules.
Despite a lower percentage of pollinated flowers in the year of low pollinator abundance, similar numbers of flowers set fruit in both years, because fewer flower buds and flowers were eaten by Hadena larvae during the year of low pollinator visitation. The number of seed capsules preyed upon was also lower in the year with low pollinator abundance, resulting in a higher seed set. The positive correlation between the percentage of pollinated flowers and the percentage of seed capsules destroyed was also observed when comparing flowers opening in different parts of the season.
Early flowering plant individuals had the same pollination success but suffered higher seed predation than late flowering ones. Selection for maximized pollination success through synchronous flowering, is probably the main reason for the compressed flowering period in 5. vulgaris , but the high level of predation early in the season may further increase the reproductive success of synchronous flowering individuals.  相似文献   

15.
Flowering plant density can increase number of visits and fruit set in multi-flowering plants, however this aspect has not been studied on few flower species. We studied the effects of individual floral display and plant density on the fruit production of the epiphytic, moth-pollinated orchid, Ryncholaelia glauca, in an oak forest of Chavarrillo, Veracruz, Mexico. Species is non-autogamous, and produced one flower per flowering shoot each flowering season. We hypothesized that orchids with more flowering shoots and those on trees with clumps of conspecific should develop more fruits than isolated ones. R. glauca population flowers synchronouly, and individual flowers last up to 18 days, with flowers closing rapidly after pollination. Individuals produced few flowers per year, although some plants developed flowers in both seasons and fewer of them developed fruits both years. There was no relationship between flower number per orchid, or per host tree, with the number of fruits developed per plant. Host trees with flowering and fruiting orchids were randomly dispersed and the pattern of distribution of flowering and fruiting plants was not related. Apparently, pollinators visit the flowers randomly, with no evidence of density dependence. The fruit set of R. glauca was as low as fruit set of multi-flowered orchids moth pollinated, suggesting that fruit set on moth pollinated orchids could be independent of the number of flowers displayed.  相似文献   

16.
The structural, flowering, and fruit-setting patterns of inflorescences of mature Hamlin and Valencia orange and Marsh grapefruit trees were studied for three years. Several development patterns were found, some of which were relatively consistent for the different varieties or years of study. The sequence of anthesis on an inflorescence was: apical flower first, then basal flower, then the subapical flower. Terminals on which the earlier flowers appeared tended to have more inflorescences than those on which flowers appeared later. Inflorescences on which earlier flowers appeared also produced more flowers than those which began flowering later. Inflorescences that began flowering later were more likely to have leaves or have a greater number of leaves than earlier inflorescences. More than half of the inflorescences carried no leaves, and most of these had one flower. No evidence of a relationship between number of flowers and length of the inflorescence was found. Fruit set occurred primarily during the latter part of the flowering period. Many fruit were set on inflorescences without leaves, but on the basis of percent of flowers setting fruit, inflorescences with leaves were more productive. The greatest fruit set occurred in the subapical position on the inflorescence. With growth changes these fruit often appeared to be developing in the apical position. These patterns generally differed little from year to year. Variations may have been due to the differences in the number of flowers produced by the trees. Results were also similar between Hamlin and Valencia oranges. Patterns on Marsh grapefruit resembled those for the oranges but were frequently less consistent.  相似文献   

17.
Borges RM  Gowda V  Zacharias M 《Oecologia》2003,136(4):571-573
In low-density butterfly-pollinated Mussaenda frondosa (Rubiaceae), flowers attract pollinators at short distances while conspicuous, non-rewarding accessory bracts are detectable at long distances by long-ranging pollinators such as the birdwing butterfly Troides minos that did not detect flower-bearing plants in the absence of these bracts. However, even in the absence of flowers, the white, ultraviolet-absorbing bracts attracted butterflies that visited flowerless plants. Although flower visits by short-ranging territorial butterflies declined significantly on removal of bracts, they did not cease completely. Nectar-robbing carpenter bees and birds did not change their behaviour following bract removal. Bract removal caused a significant decline in fruit set, indicating their importance as visual signals to pollinators.  相似文献   

18.
Pollinator syndrome is one of the most important determinants regulating pollen dispersal in tropical tree species. It has been widely accepted that the reproduction of tropical forest species, especially dipterocarps that rely on insects with weak flight for their pollination, is positively density-dependent. However differences in pollinator syndrome should affect pollen dispersal patterns and, consequently, influence genetic diversity via the mating process. We examined the pollen dispersal pattern and mating system of Shorea maxwelliana, the flowers of which are larger than those of Shorea species belonging to section Mutica which are thought to be pollinated by thrips (weak flyers). A Bayesian mating model based on the paternity of seeds collected from mother trees during sporadic and mass flowering events revealed that the estimated pollen dispersal kernel and average pollen dispersal distance were similar for both flowering events. This evidence suggests that the putative pollinators – small beetles and weevils – effectively contribute to pollen dispersal and help to maintain a high outcrossing rate even during sporadic flowering events. However, the reduction in pollen donors during a sporadic event results in a reduction in effective pollen donors, which should lead to lower genetic diversity in the next generation derived from seeds produced during such an event. Although sporadic flowering has been considered less effective for outcrossing in Shorea species that depend on thrips for their pollination, effective pollen dispersal by the small beetles and weevils ensures outcrossing during periods of low flowering tree density, as occurs in a sporadic flowering event.  相似文献   

19.
《Nordic Journal of Botany》2007,25(3-4):183-189
Reproduction of plants pollinated solely by flower-visiting animals depends on the ability of the population and each of its flowering member to attract pollinators. Factors affecting the pollination of nectarless species differ somewhat from those affecting the pollination of rewarding species due to the avoidance behaviour of pollinators after visiting empty flowers.
We studied a non-mimic food-deceptive orchid, Dactylorhiza incarnata ssp. incarnata, in 16 populations in central Finland to examine if population properties and plant size affected reproductive success of plants.
We found that the number of flowering plants increased total pollinia removal and seed production of the population, but had no effect on reproduction of individual plants. Dactylorhiza incarnata occurred in open mires with virtually no rewarding species in the neighbourhood, but the distance from the forest edge did not have any effect on reproduction. However, increased variation in the number of flowers among within-population plants enhanced plant reproductive success. The increased variation probably hampered the learning process of flower visitors. Plant size affected reproductive success only in populations with a high general reproductive success indicating that in the rarely visited populations, pollination of individual plants is mainly affected by random effects.  相似文献   

20.
This study measured the quantities of effective pollen vectors and their pollen loads arriving at the canopies of dioecious tropical rain forest trees in north-east Queensland. Population flowering synchrony, effective pollinator populations and pollen loads transferred between staminate and pistillate trees were compared among three insect-pollinated tree species. All three were visited by a wide range of insects, 75% of which (mostly 3–6 mm long) carried conspecific pollen. Fewer than 8% of individual insects were found to be carrying single-species pollen exclusively and none could be described as specialist pollen foragers. The introduced honeybee carried greater quantities of pollen than any native species but was not necessarily a reliable pollinator. The brief flowering periods in Neolitsea dealbata (3–4 weeks) and Litsea leefeana (4–5 weeks) populations were synchronized among individuals. Flowering in the Diospyros pentamera population extended over 15 weeks and most individuals were in flower for most of this period. Staminate trees began flowering earlier, produced more flowers and attracted relatively more insects than did pistillate trees, suggesting a density-dependent response of pollinators to flowering performance. Pollen was trapped in greater quantities on insects at staminate trees than at pistillate trees. Insect numbers increased at peak flowering periods and Diptera were the most abundant flower visitors. Anthophilous Coleoptera were more numerous at staminate than at pistillate trees in all three tree species populations. Larger quantities of pollen were mobilized during peak flowering times although the greatest quantities were transferred to pistillate canopies towards the end of the population flowering periods. Diptera carried pollen more often to pistillate N. dealbata and L. leefeana trees than did other groups whereas Coleoptera carried pollen more often to pistillate D. pentamera trees. The two contrasting flowering performances in the three tree species are discussed with reference to mechanisms that facilitate pollen transfer between staminate and pistillate trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号