首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
P Maly  P Dráber 《FEBS letters》1992,311(2):102-106
RAC65 is a mutant clone of mouse embryonal carcinoma cells, P19, which does not undergo terminal differentiation upon treatment with retinoic acid (RA). RAC65 cells express a truncated RA receptor alpha (RAR alpha) which, however, does not fully explain their defect. Here we show that RAC65 cells exhibit an additional defect in RAR alpha mRNA which may reflect a defect in RNA splicing. The parental and mutant cells also differ in their capacities to bind [3H]RA into nuclear fractions and in expression of cellular RA binding protein (CRABP) mRNA after treatment with RA. The combined data suggest that the defect in RAC65 RAR alpha results in reduced expression of the CRABP gene after RA treatment and, therefore, increased flow of RA into the nucleus.  相似文献   

3.
4.
5.
Retinoic acid induces the differentiation of PCC4.aza 1R and Nulli-SCC1 embryonal carcinoma (EC) cells. In response to retinoic acid treatment, the levels of cyclic AMP (cAMP)-dependent protein kinases are enhanced in the plasma membrane within 17 hours and in the cytosol fractions of these cells within 2 to 3 days, as determined by phosphotransferase activity and by 8-azido-cyclic [32P]AMP binding to the RI and RII regulatory subunits. PCC4 (RA)-1 and Nulli (RA)-1 are mutant EC lines that fail to differentiate in response to retinoic acid. The former line, but not the latter, lacks cellular retinoic acid-binding protein (cRABP). Basal levels of cAMP-dependent protein kinase activities are elevated in PCC4 (RA)-1 cells. When these cells are treated with retinoic acid, neither cAMP-dependent protein kinase activities nor cAMP binding activities are enhanced; rather, there is a decrease in cytosolic kinase activity and RI subunit. On the other hand, Nulli (RA)-1 cells exhibit increases both in cAMP-dependent protein kinase activities and cAMP binding in response to retinoic acid. These results raise the possibility that cRABP mediates the enhancement of regulatory and catalytic subunits of cAMP-dependent protein kinases in both the membrane and the cytosolic fractions of the teratocarcinoma cells. There also might be some effects of retinoic acid on the cAMP-dependent protein kinase that are unrelated to differentiation and to the presence of cRABP.  相似文献   

6.
7.
Differentiation of P19 EC cells along different pathways into derivatives resembling cells of the three embryonic germ layers is accompanied by characteristic differences in modulation of expression of each of the three retinoic acid receptor genes, RAR alpha, -beta and -gamma. Differentiation induced by addition of RA to P19 EC cells cultured in monolayer is accompanied by a rapid increase in expression of both RAR alpha and -beta. Induction of RAR beta occurs in a characteristic biphasic manner, suggesting that multiple factors and/or different mechanisms are involved in controlling its expression. RAR beta mRNA is induced to a far higher level during early aggregation in the presence of RA than during early differentiation in monolayer, suggesting that the direction of differentiation depends on the number and/or ratio of alpha and beta type of RA receptors. Aggregation of P19 EC cells in the presence of RA, but not DMSO, is accompanied by repression of RAR gamma, suggesting that the expression of RAR beta and RAR gamma during neuroectodermal differentiation is mutually exclusive. The effects of RA on RAR expression are significantly greater in G1 than in S-phase of the cell cycle. These results extend previous observations that commitment to differentiation is cell cycle dependent and indicates that critical target gene regulation in response to RA has to take place in G1 for differentiation to occur.  相似文献   

8.
9.
Murine embryonal carcinoma cells can differentiate into a varied spectrum of cell types. We observed the abundant and precocious development of neuronlike cells when embryonal carcinoma cells of various pluripotent lines were aggregated and cultured in the presence of nontoxic concentrations of retinoic acid. Neuronlike cells were also formed in retinoic acid-treated cultures of the embryonal carcinoma line, P19, which does not differentiate into neurons in the absence of the drug. The neuronal nature of these cells was confirmed by their staining with antiserum directed against neurofilament protein in indirect immunofluorescence experiments. Retinoic acid-treated cultures also contained elevated acetylcholinesterase activity. Glial cells, identified by immunofluorescence analysis of their intermediate filaments, and a population of fibroblastlike cells were also present in retinoic acid-treated cultures of P19 cells. We did not observe embryonal carcinoma, muscle, or epithelial cells in these cultures. Neurons and glial cells appeared in cultures exposed to retinoic acid for as little as 48 h. We found no evidence for retinoic acid toxicity, suggesting that the effect of the drug was to induce the development of neurons and glia rather than to select against cells differentiating along other developmental pathways.  相似文献   

10.
Murine embryonal carcinoma (EC) cells are induced to differentiate when cultured in the presence of retinoic acid (RA). Whereas the EC cells have a high plating efficiency, the differentiated cells have little or no colony-forming ability under the same conditions. We have assumed that the loss of colony-forming ability following exposure of EC cells to RA corresponds to the irreversible commitment of EC cells to differentiate. We found that uncommitted EC cells persist in RA-treated aggregates of EC cells and that the proportion of EC cells stabilizes at a level inversely related to the RA concentration. Both experimental evidence and mathematical modelling results are consistent with the interpretation that there is a dynamic equilibrium achieved by a balance between the processes of EC cell proliferation and differentiation. Since different cell types are induced by different RA concentrations, our results suggest that the commitment to differentiate is not related in any simple way to the developmental program which ensues.  相似文献   

11.
Phosphatidylinositol transfer protein (PI-TP) was studied in P19 embryonal carcinoma (EC) cells at different stages of retinoic acid (RA) induced differentiation. Western blot analysis indicated an increased expression of PI-TP (35 kDa) during differentiation. Western blots of isoelectric focusing gels showed that the 35 kDa band consisted of the PI-carrying form of PI-TP (pl 5.5) and of a novel, more acidic form of PI-TP (pl 5.4), levels of both of which increased during differentiation. These increased levels were not reflected in the in vitro PI-transfer activity of the cytosolic fraction nor in the mRNA levels as analyzed by northern blotting. By using indirect immunofluorescence it was shown that PI-TP is localized in the cytoplasm and associated with perinuclear Golgi structures and that this distribution is slightly affected during RA-induced differentiation. Immunoprecipitation of PI-TP from [32P]Pi labeled cells demonstrated that the level of phosphorylation of PI-TP is high in undifferentiated P19 EC cells and low after 5 days of RA-induced differentiation. These results strongly suggest that changes in the levels of PI-TP are intimately connected with changes in the growth characteristics of P19 EC cells during RA-induced differentiation. It remains to be established to what extent this connection is governed by the recent finding that PI-TP is an essential cytosolic factor in stimulating phospholipase C activity.  相似文献   

12.
13.
14.
15.
16.
Retinoic acid stimulates several murine embryonal carcinoma (EC) cell lines, even those previously considered to be incapable of differentiating, to give rise to cell types distinguishable from the parental phenotype in morphology, production of plasminogen activator and surface protein properties. Retinoic acid promotes these changes over a range of low concentrations (10−9–10−5 M) which are generally non-toxic to the cells. The effects are clearly demonstrated when EC cells are aggregated prior to exposure to retinoic acid. It is concluded that the observed phenotypic alterations induced by retinoic acid reflect differentiation of the EC cells since non-EC cell characteristics are maintained by cloned cells several generations after retinoic acid is removed from the cultures. Our studies suggest that although retinoic acid stimulates the conversion of EC cells to differentiated derivatives, it does not influence the direction of differentiation. Furthermore, the effectiveness of retinoic acid in stimulating differentiation of EC cells from lines such as Nulli-SCC1 raises the question of whether true ‘nullipotent’ EC lines really exist.  相似文献   

17.
Human embryonal carcinoma (EC) cells and other human teratocarcinoma-derived cells lines were not observed to differentiate in culture in response to retinoic acid. Nevertheless, they express high levels of a cellular binding protein (cRABP) which, in murine EC cells, appears to be necessary for the induction of differentiation by retinoic acid.  相似文献   

18.
Single cells of the feeder-layer-dependent mouse embryonal carcinoma (EC) cell line, NG2, can spontaneously give rise to colonies containing a wide variety of differentiated cell types in vitro. When cultured with retinoic acid at a concentration of 10(-7) M, single NG2 cells irreversibly differentiated to parietal endoderm, as identified by morphological criteria and immunohistochemical staining. Parietal endoderm was also the first product of spontaneous differentiation. However, when retinoic acid was added to monolayer groups of NG2 cells, not all of the cells were induced to differentiate. The parietal-endoderm cells which did form were generally found at the periphery of cell colonies, as is the case during spontaneous differentiation. Differentiation in the centre of these colonies yielded a variety of cell types over a 21-day period. These results are consistent with the hypothesis that retinoic acid induces the differentiation of EC cells by accelerating cellular response to intrinsic stimuli, rather than by overriding these stimuli.  相似文献   

19.
Retinoid X receptors (RXRs) heterodimerize with multiple nuclear hormone receptors and are thought to exert pleiotropic functions. To address the role of RXRs in retinoic acid- (RA) mediated gene regulation, we designed a dominant negative RXR beta. This mutated receptor, termed DBD-, lacked the DNA binding domain but retained the ability to dimerize with partner receptors, resulting in formation of nonfunctional dimers. DBD- was transfected into P19 murine embryonal carcinoma (EC) cells, in which reporters containing the RA-responsive elements (RAREs) were activated by RA through the activity of endogenous RXR-RA receptor (RAR) heterodimers. We found that DBD- had a dominant negative activity on the RARE reporter activity in these cells. P19 clones stably expressing DBD- were established; these clones also failed to activate RARE-driven reporters in response to RA. Further, these cells were defective in RA-induced mRNA expression of Hox-1.3 and RAR beta, as well as in RA-induced down-regulation of Oct3 mRNA. Gel mobility shift assays demonstrated that RA treatment of control P19 cells induces RARE-binding activity, of which RXR beta is a major component. However, the RA-induced binding activity was greatly reduced in cells expressing DBD-. By genomic footprinting, we show that RA treatment induces in vivo occupancy of the RARE in the endogenous RAR beta gene in control P19 cells but that this occupancy is not observed with the DBD- cells. These data provide evidence that the dominant negative activity of DBD- is caused by the lack of receptor binding to target DNA. Finally, we show that in F9 EC cells expression of DBD- leads to inhibition of the growth arrest that accompanies RA-induced differentiation. Taken together, these results demonstrate that RXR beta and partner receptors play a central role in RA-mediated gene regulation and in the control of growth and differentiation in EC cells.  相似文献   

20.
All-trans-retinoic acid, an endogenous morphogen, induced neuronal differentiation of P19 murine embryonal carcinoma cells. Peak differentiation, as judged by the elaboration of neuronal processes, occurred 8 days after exposure of the cells to 0.5 mM retinoic acid, a concentration known to induce neuronal differentiation. An examination of the expression of the extracellular matrix receptors, integrins, during this retinoic acid-induced differentiation period, demonstrated a specific and strong induction of expression of two polypeptides (130 and 115 kDa) immunoprecipitated with an anti-human vitronectin receptor antiserum. The expression of a 90-kDa polypeptide, also immunoprecipitating with this antiserum was induced as well, but to a much smaller extent. The expression of a 96-kDa polypeptide immunoprecipitated by this antiserum and present in the untreated cells was not induced by retinoic acid. The increase in the expression of these polypeptides paralleled the neuronal differentiation of the P19 embryonal carcinoma cells. The expression of these integrins was not induced in a variant of the P19 cells, P19RAC65, which are resistant to differentiation induction by retinoic acid. Utilizing integrin subunit-specific anti-cytoplasmic peptide antibodies together with immunoprecipitation and Western blot analysis, the 130- and 115-kDa polypeptides were identified as the integrin alpha v and beta 1 subunits, respectively. The 90-kDa polypeptide, also induced by retinoic acid, was identified as beta 3, whereas the identity of the uninduced 96-kDa polypeptide remains unclear as yet. Peptide map analysis of deglycosylated polypeptides demonstrated that the 90- and 96-kDa polypeptides are distinct proteins and that the 115-kDa polypeptides immunoprecipitated with either anti-alpha v or anti-beta 1 antibodies are identical, further establishing that the 115-kDa polypeptide associating with alpha v is beta 1. The retinoic acid-induced expression of beta 1 occurred at the level of mRNA expression which also paralleled neuronal differentiation, but peaked slightly ahead of the cell surface expression of beta 1. The expression of other beta 1-associated alpha subunits was not induced by retinoic acid in these cells. These data demonstrate that retinoic acid strongly induces the expression of the integrin heterodimer alpha v beta 1 and also, to a smaller extent, the expression of alpha v beta 3. The retinoic acid-induced, high level surface expression of the alpha v beta 1 heterodimer is tightly correlated with the induction of neuronal differentiation by retinoic acid. This finding suggests an important role for the alpha v beta 1 heterodimer in the neuronal differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号