首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The liver is a unique organ, and first in line, the hepatocytes encounter the potential to proliferate during cell mass loss. This phenomenon is tightly controlled and resembles in some way the embryonal co-inhabitant cell lineage of the liver, the embryonic hematopoietic system. Interestingly, both the liver and hematopoietic cell proliferation and growth are controlled by various growth factors and cytokines. IL-6 and its signaling cascade inside the cells through STAT3 are both significantly important for liver regeneration as well as for hematopoietic cell proliferation. The process of liver regeneration is very complex and is dependent on the etiology and extent of liver damage and the genetic background. In this review we will initially describe the clinical relevant condition, portraying a number of available animal models with an emphasis on the relevance of each one to the human condition of fulminant hepatic failure (FHF). The discussion will then be focused on the role of cytokines in liver failure and regeneration, and suggest potential new therapeutic modalities for FHF. The recent findings on the role of IL-6 in liver regeneration and the activity of the designer IL-6/sIL-6R fusion protein, hyper-IL-6, in particular, suggest that this molecule could significantly enhance liver regeneration in humans, and as such could be a useful treatment for FHF in patients.  相似文献   

2.
The precise role of IL-6 in liver regeneration and hepatocyte proliferation is controversial and the role of SOCS3 in liver regeneration remains unknown. Here we show that in vitro treatment with IL-6 inhibited primary mouse hepatocyte proliferation. IL-6 induced p21cip1 protein expression in primary mouse hepatocytes. Disruption of the p21cip1 gene abolished the inhibitory effect of IL-6 on cell proliferation. Co-culture with nonparenchymal liver cells diminished IL-6 inhibition of hepatocyte proliferation, which was likely due to IL-6 stimulation of nonparenchymal cells to produce HGF. Finally, IL-6 induced higher levels of p21cip1 protein expression and a slightly stronger inhibition of cell proliferation in SOCS3+/- mouse hepatocytes compared to wild-type hepatocytes, while liver regeneration was enhanced and prolonged in SOCS3+/- mice. Our findings suggest that IL-6 directly inhibits hepatocyte proliferation via a p21cip1-dependent mechanism and indirectly enhances hepatocyte proliferation via stimulating nonparenchymal cells to produce HGF. SOCS3 negatively regulates liver regeneration.  相似文献   

3.
Gene regulation by interleukin 6   总被引:1,自引:0,他引:1  
  相似文献   

4.
Interleukin-6 (IL-6) plays an important role in liver regeneration and protection against liver damage. In addition to IL-6 classic signaling via membrane bound receptor (mIL-6R), IL-6 signaling can also be mediated by soluble IL-6R (sIL-6R) thereby activating cells that do not express membrane bound IL-6R. This process has been named trans-signaling. IL-6 trans-signaling has been demonstrated to operate during liver regeneration. We have developed methods to specifically block or mimic IL-6 trans-signaling. A soluble gp130 protein (sgp130Fc) exclusively inhibits IL-6 trans-signaling whereas an IL-6/sIL-6R fusion protein (Hyper-IL-6) mimics IL-6 trans-signaling. Using these tools we investigate the role of IL-6 trans-signaling in CCl4 induced liver damage. Blockade of IL-6 trans-signaling during CCl4 induced liver damage led to higher liver damage, although induction of Cyp4502E1 and thus bioactivation of CCl4 was unchanged. Depletion of neutrophils resulted in reduced liver transaminase levels irrespective of IL-6 trans-signaling blockade. Furthermore, IL-6 trans-signaling was important for refilling of hepatocyte glycogen stores, which were depleted 24 h after CCl4 treatment. We conclude that IL-6 trans-signaling via the soluble IL-6R is important for the physiologic response of the liver to CCl4 induced chemical damage.  相似文献   

5.
IL-6 is a major regulator of acute phase protein synthesis in the liver. It exerts its action via a plasma membrane receptor consisting of two subunits, a ligand binding 80-kDa glycoprotein and a 130-kDa glycoprotein involved in signal transduction. We genetically generated a soluble form of the 80-kDa subunit of the human IL-6R (shIL-6R) in mouse fibroblasts (NIH/3T3 cells). The shIL-6R added to human hepatoma cells (HepG2) amplified the induction of alpha 1-antichymotrypsin and haptoglobin by IL-6 at the mRNA and protein level. Moreover, a model for a liver permanently exposed to high IL-6 concentrations has been developed; HepG2 cells were stably transfected with human IL-6-cDNA; 10(6) of the transfected cells (HepG2-IL-6) synthesized and secreted 2 micrograms of IL-6 within 24 h. Incubation of these cells with endogenous or exogenous IL-6 did not result in acute-phase protein induction. However, these IL-6-desensitized cells responded to other cytokines such as leukemia inhibitory factor, transforming growth factor beta 1, and IFN-gamma, known to modulate acute phase protein synthesis in the liver. Incubation of HepG2-IL-6 cells with shIL-6R reconstituted their responsiveness to IL-6 in a dose- and time-dependent manner. The possible biologic role that might be played by the shIL-6R in disease is discussed.  相似文献   

6.
Gp130 is a shared signal-transducing receptor for a family of four-helix cytokines, of which interleukin-6 is a prototypic member. IL-6-type cytokines activate gp130 to elicit downstream intracellular JAK/STAT signaling cascades through formation of hetero-oligomeric receptor complexes. Interleukin-6 must first complex with its specific alpha-receptor (Ralpha) in order to bind and activate gp130. We have dissected the extracellular activation pathway of human gp130 by human IL-6 through reconstitution of soluble complexes representing intermediate and final states in the hierarchical assembly of the IL-6/IL-6Ralpha/gp130 signaling complex. To isolate these hetero-complexes, we have applied a protein engineering strategy of covalently linking IL-6 to its Ralpha, which results in a "hyperactive" single-chain complex (hyper-IL-6) which we express in both Escherichia coli and insect cells. We have determined that IL-6/IL-Ralpha and the cytokine-binding homology region (CHR) of gp130 (D2D3) form a stable trimolecular "recognition" complex (trimer) consisting of 1IL-6,1 IL-6Ralpha, and 1 gp130-CHR. Addition of the N-terminal (D1) Ig-like domain (IGD) of gp130 to the CHR results in a transition to a hexameric "activation" complex containing 2 IL-6, 2IL-6Ralpha, and 2 gp130. These results clearly demonstrate that the recognition and activation complexes are disparate hetero-oligomeric molecular species linked by the recruitment of the gp130 IGD by the unique site III epitope present on all gp130-class cytokines. The results of these studies are relevant to other members of the IL-6 family of gp130-cytokines and address a longstanding question concerning the respective roles of the gp130 CHR and IGD in assembly of the active signaling oligomer.  相似文献   

7.
Interleukin-6 (IL-6) is a multifunctional cytokine having primarily anti-apoptotic and anti-inflammatory effects. Recent reports have documented that IL-6 plays a key role in liver regeneration. Intracellular deficiency of S-adenosylmethionine (SAMe) is a hallmark of toxin-induced liver injury. Although the administration of exogenous SAMe attenuates liver injury, its mechanisms of action are not fully understood. Here we investigated the effects of exogenous SAMe on IL-6 production in monocytes and Kupffer cells. RAW 264.7 cells, a murine monocyte cell line, and isolated rat Kupffer cells were stimulated with lipopolysaccharide (LPS) in the absence or presence of exogenous SAMe. IL-6 production was assayed by ELISA and intracellular SAMe concentrations were measured by HPLC. We have found that exogenous SAMe administration enhanced both IL-6 protein production and gene expression in LPS-stimulated monocytes and Kupffer cells. Cycloleucine (CL), an inhibitor for extrahepatic methionine adenosyltransferases (MAT), inhibited LPS-stimulated IL-6 production. The enhancement of LPS-stimulated IL-6 production by SAMe was inhibited by ZM241385, a specific antagonist of adenosine (A2) receptor. Our results demonstrate that SAMe administration may exert its anti-inflammatory and hepatoprotective effects, at least in part, by enhancing LPS-stimulated IL-6 production.  相似文献   

8.
Interleukin-6 (IL-6) is a cytokine with many activities. It has functions in the regulation of the immune system and the nervous system. Furthermore, IL-6 is involved in liver regeneration and in the metabolic control of the body. On target cells, IL-6 binds to an 80 kDa IL-6 receptor (IL-6R). The complex of IL-6 and IL-6R associates with a second protein, gp130, which thereupon dimerizes and initiates intracellular signaling. Whereas gp130 is expressed on all cells, IL-6R is only present on few cells in the body including hepatocytes and some leukocytes. Cells, which do not express IL-6R cannot respond to the cytokine, since gp130 alone has no measurable affinity for IL-6. Interestingly, a soluble form of IL-6R (sIL-6R) comprising the extracellular portion of the receptor can bind IL-6 with a similar affinity as the membrane bound IL-6R. The complex of IL-6 and sIL-6R can bind to gp130 on cells, which do not express the IL-6R, and which are unresponsive to IL-6. This process has been called trans-signaling. Here I will review published evidence that IL-6 trans-signaling is pro-inflammatory whereas classic IL-6 signaling via the membrane bound IL-6R is needed for regenerative or anti-inflammatory activities of the cytokine. Furthermore, the detailed knowledge of IL-6 biology has important consequences for therapeutic strategies aimed at the blockade of the cytokine IL-6.  相似文献   

9.
Interleukin 6 receptor soluble urinary protein (IL-6-R-SUP), a purified urinary protein binding IL-6 and identified as a truncated 50 kDa soluble form of the 80 kDa IL-6 cellular receptor, was tested for its biological activity. Addition of IL-6-R-SUP enhances the growth stimulation of mouse plasmacytoma T1165 by subliminal concentrations of human recombinant IL-6. Since this effect could be due to a lower affinity of human IL-6 for the mouse cell receptor, we tested the effect of IL-6-R-SUP on human cells. We show that the growth-inhibitory effect of IL-6 on breast carcinoma cells is enhanced by addition of IL-6-R-SUP to these human cells although they possess abundant IL-6 receptors. With IL-6-R-SUP, complete growth inhibition by IL-6 could be achieved and the cells became more sensitive to low levels of IL-6. These effects were prevented by a monoclonal antibody against IL-6-R-SUP which blocks IL-6 binding to cells. The naturally occurring IL-6-R-SUP may help to increase the growth-regulatory action of IL-6.  相似文献   

10.
Hypomorphic ADAM17(ex/ex) mice showed defects in mucosal regeneration due to inefficient enhanced GFR shedding. ADAM17 is the main sheddase of interleukin-6 receptor (IL-6R) to induce IL-6 trans-signaling. However, serum levels of soluble murine IL-6R were not reduced in ADAM17(ex/ex) mice, and murine ADAM17 was not the major sheddase of murine IL-6R. Shedding of murine IL-6R by murine ADAM17 was rescued in chimeric murine IL-6R proteins containing any extracellular domain but not the transmembrane and intracellular domain of human IL-6R. Apoptosis is a physiological stimulus of ADAM17-mediated shedding of human IL-6R. Even though apoptosis induced IL-6R shedding in mice, the responsible protease was identified as ADAM10. ADAM10 also was identified as protease responsible for ionomycin-induced shedding of murine and human IL-6R. However, in ADAM10-deficient murine embryonic fibroblasts, compensatory shedding of human IL-6R was mediated by ADAM17, but loss of ADAM10-mediated shedding of murine IL-6R was compensated by an as-yet-unidentified protease. Finally, we identified physiological purinergic P2X7 receptor stimulation as a novel inducer of murine and human IL-6R shedding solely mediated by ADAM10. In conclusion, we describe an unexpected species specificity of ADAM10 and ADAM17 and identified ADAM10 as novel inducible sheddase of IL-6R in mice and humans, which might have consequences for the interpretation of phenotypes from ADAM17- and ADAM10-deficient mice.  相似文献   

11.
12.
13.
14.
Lymphocytic choriomeningitis virus (LCMV) and Lassa virus can cause hemorrhagic fever and liver disease in primates. The WE strain of LCMV (LCMV-WE) causes a fatal Lassa fever-like disease in rhesus macaques and provides a model for arenavirus pathogenesis in humans. LCMV-WE delivered intravenously or intragastrically to rhesus macaques targets hepatocytes and induces high levels of liver enzymes, interleukin-6 (IL-6), soluble IL-6 receptor (sIL-6R), and soluble tumor necrosis factor receptors (sTNFRI and -II) in plasma during acute infection. Proinflammatory cytokines TNF-alpha and IL-1beta were not detected in plasma of infected animals, but increased plasma gamma interferon was noted in fatally infected animals. Immunohistochemistry of acute liver biopsies revealed that 25 to 40% of nuclei were positive for proliferation antigen Ki-67. The increases in IL-6, sIL-6R, sTNFR, and proliferation antigen that we observe are similar to the profile of incipient liver regeneration after surgical or toxic injury (N. Fausto, Am. J. Physiol. 277:G917-G921, 1999). Although IL-6 was not directly induced by virus infection in vitro, peripheral blood mononuclear cells from acutely infected monkeys produced higher levels of IL-6 upon lipopolysaccharide stimulation than did healthy controls. Our data confirm that acute infection is associated with weak inflammatory responses in tissues and initiates a program of liver regeneration in primates.  相似文献   

15.
The biological actions of interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and ciliary neurotrophic factor (CNTF) are mediated via respective functional receptor complexes consisting of a common signal-transducing component, gp130, and other specific receptor components, IL-6 receptor alpha (IL-6R), LIF receptor beta (LIFR), and CNTF receptor alpha (CNTFR). IL-6, LIF, and CNTF are implicated in skeletal muscle regeneration. However, the cell populations that express these receptor components in regenerating muscles are unknown. Using in situ hybridization histochemistry, we examined spatiotemporal expression patterns of gp130, IL-6R, LIFR, and CNTFR mRNAs in regenerating muscles after muscle contusion. At the early stages of regeneration (from 3 hr to Day 2 post contusion), significant signals for gp130 and LIFR mRNAs were detected in myonuclei and/or nuclei of muscle precursor cells (mpcs) and in mononuclear cells located in extracellular spaces between myofibers after muscle contusion, but IL-6R mRNA was expressed only in mononuclear cells. At Day 7 post contusion, signals for gp130, LIFR, and IL-6R mRNAs were not detected in newly formed myotubes, whereas the CNTFR mRNA level was upregulated in myotubes. These findings suggest that the upregulation of receptor subunits in distinct cell populations plays an important role in the effective regeneration of both myofibers and motor neurons. (J Histochem Cytochem 48:1203-1213, 2000)  相似文献   

16.
Interleukin-6 (IL-6) induces changes in gene expression and the N-glycosylation pattern of acute-phase proteins in hepatocytes. IL-6 exerts its action via a cell surface receptor complex consisting of an 80 kDa IL-6 binding protein (gp80) and a 130 kDa glycoprotein (gp130) involved in signal transduction. A genetically engineered gp80-derived soluble human IL-6-receptor (shIL-6-R) significantly enhanced the IL-6 effect on N-glycosylation changes (revealed by reactivity with the lectin-concanavalin A) of a1-protease inhibitor (PI) secreted by human hepatoma cells (HepG2). Stable transfection of IL-6-cDNA into HepG2 cells (HepG2-IL-6) resulting in constitutive secretion of 2 micrograms of IL-6 per 10(6) cells in 24 h led to a down-regulation of surface-bound gp80 and subsequent homologous desensitization of HepG2-IL-6 cells towards IL-6. Soluble human IL-6-R functionally substituted membrane-bound gp80 resulting in a reconstitution of responsiveness of HepG2-IL-6 cells.  相似文献   

17.
Major hepatic resection in cirrhotic patients is associated with impaired liver regeneration and failure, leading to high peri-operative mortality. In this work, the causes of defective regeneration in cirrhotic liver and the utility of IL-6 treatment were investigated in an experimental model combining cirrhosis and partial hepatectomy in the rat. Relative to normal controls, decompensated cirrhotic animals showed decreased survival, while compensated cirrhotic animals showed similar survival but reduced hepatic DNA synthesis and newly regenerated liver mass amount. Defective liver regeneration was associated with a decrease in STAT3 and NF-kB activation, consistent with an increased accumulation of their respective inhibitors PIAS3 and IkBα, and with a decreased induction of Bcl-xL. Treatment with recombinant IL-6 enhanced survival of decompensated cirrhotic animals, while it did not affect survival of compensated cirrhotic animals but sustained liver regeneration, by restoring STAT3 and NF-kB activation and Bcl-xL induction to the levels found in normal controls. The pro-growth effects exerted by IL-6 treatment in cirrhotic liver were attained also at low, pharmacologically acceptable doses. In conclusion, our results suggest that IL-6 treatment may be therapeutic in major resection of cirrhotic liver.  相似文献   

18.
During the acute phase response, synthesis of C-reactive protein and serum amyloid A is increased. To investigate whether the enhanced synthesis of these proteins are due to stimulatory effect of inflammatory mediators such as interleukin-1 (IL-1) and interleukin-6 (IL-6) produced by macrophages and monocytes, primary cultures of adult human hepatocytes were exposed to recombinant (r)IL-1, rIL-6 or rIL-1 and monospecific anti rIL-6 antibodies in the presence of 1 microM dexamethasone. The findings indicate that rIL-1 and rIL-6 both stimulate the liver synthesis of C-reactive protein and serum amyloid A, however monospecific anti rIL-6 antibodies reduce the stimulatory effect of rIL-1 on the synthesis of these proteins. These findings suggest that IL-6 plays a key role in the stimulation of synthesis of serum amyloid A and C-reactive protein by the human liver cells.  相似文献   

19.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

20.
An analysis of the mechanism of generation of the soluble interleukin-6 receptor (IL-6R) has been performed. The membrane-bound receptor is proteolytically cleaved to release a soluble receptor form which retained its ligand binding capacity. Furthermore, the soluble IL-6R is unique in its ability to induce a biological signal in complex with the ligand interleukin-6 (IL-6) on cells which by themselves do not bind IL-6. Shedding of the IL-6R is strongly activated by PMA and can be inhibited by the protein kinase inhibitor staurosporine. The generation of the IL-6R is not dependent on protein synthesis. The inactive PMA analogue 4-alpha-phorbol-12,13-didecanoate fails to induce shedding of the IL-6R. Transfection of a protein kinase C expression plasmid into IL-6R expressing cells leads to enhanced shedding of the receptor. These experiments clearly show that protein kinase C regulates shedding of the IL-6R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号