首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Guo M  Sun H  McArdle HJ  Gambling L  Sadler PJ 《Biochemistry》2000,39(33):10023-10033
The organometallic anticancer agent titanocene dichloride, Cp(2)TiCl(2), is now in phase II clinical trials as an anticancer drug, but its mechanism of action is poorly understood. We show here that the interactions of Cp(2)TiCl(2) with human serum transferrin (hTF) and that of Ti(2)-hTF with adenosine triphosphate (ATP) have characteristics that could allow transferrin to act as a mediator for titanium delivery to tumor cells. Such reactions may therefore be important to the anticancer activity of this new class of drugs. Cp(2)TiCl(2) reacts rapidly with human apo-transferrin under physiological conditions (100 mM NaCl, 25 mM bicarbonate, and 4 mM phosphate, pH 7.4) with carbonate as a synergistic anion. The Cp ligands are released from the drug. Two-dimensional [(1)H, (13)C] NMR studies of epsilon-[(13)C]Met-hTF show that Ti(IV) loads the C-lobe first followed by the N-lobe and binds in the specific Fe(III) sites. The protein conformational changes induced by Ti(IV) appear to be similar to those induced by Fe(III). Carbonate can act as a synergistic anion in Ti(2)-hTF but does not appear to be essential. A specific Ti(IV)-hTF adduct is formed even in the absence of bicarbonate. When the pH of Ti(2)-hTF solutions is lowered, no Ti(IV) is released at the endosomal pH of ca. 5.0-5.5, but one Ti(IV) dissociates between pH 4.5-2.0. In contrast, in the presence of 1 mM ATP, all Ti(IV) is readily released from both lobes when the pH is lowered from 7.0 to 4.5. Moreover, Fe(III) displaces Ti(IV) rapidly from the C-lobe of Ti(2)-hTF (<5 min) but only slowly (days) from the N-lobe. Thus, the species Fe(C)Ti(N)-hTF might also provide a route for Ti(IV) entry into tumor cells via the transferrin receptor. Ti(2)-hTF effectively blocked cell uptake of radiolabeled (59)Fe-hTF into BeWo cells, a human placental choriocarcinoma cell line in culture. These results imply that titanium transferrin might be recognized by the transferrin receptor and be taken up into cancer cells.  相似文献   

2.
Titanocene dichloride, the most studied metallocene, exhibits antiproliferative activity in a wide spectrum of murine and human tumours. In this article it is demonstrated that titanocene dichloride inhibits tumour gelatinases in a dose-dependent manner. Substrate saturation experiments and the fact that the IC50 values were increased in correlation with collagen substrate concentrations indicate that the titanocene dichloride induced inhibition is of a competitive type. Titanocene dichloride also specifically inhibits clostridium collagenase and trypsin, particularly when collagens are used as substrates. Binding experiments demonstrate that cyclopentadiene–Ti(IV) moieties, resulting from titanocene dichloride at physiological pH, are bound mainly to different types of collagens and to a lesser extent to casein or bovine serum albumin, forming soluble and stable adducts. These results indicate that titanocene dichloride behaves as a competitive inhibitor against various proteolytic enzymes by binding to the substrate rather than to the enzyme active site. This property may be responsible for the antiangiogenic effect of titanocene dichloride and additionally contributes to its anticancer action.  相似文献   

3.
The action mechanism of vanadocene dichloride, Cp2VCl2 (Cp=eta5-C5H5), has been investigated by interaction with human serum transferrin for its promising antitumor activities. Our results have shown that Cp2VCl2 binds to transferrin and form a new complex, and the calculated apparent association constant is 1.37 x 10(5)M(-1) from the fluorescence quenching. Simultaneously, the variation of the secondary structure of transferrin occurs, most probably due to the coordination of the amino residues of protein with VIV. It was evidenced that Cp is released free in solution after VIV binding to transferrin by 1H NMR measurements. These results have shown that Cp2VCl2 forms a complex with transferrin, which may provide a possible pathway in the transport and targeted delivery of the antitumor agent.  相似文献   

4.
The completely hydrolyzed titanocene dichloride, [Cp2Ti(H2O)2]2+ binding to guanine (G) and phosphate group sites of DNA were investigated by DFT method, with using deoxyguanosine monophosphate (dGMP) as incoming ligand. In the first substitutions, the calculations reveal that the diaquated titanocene binding to O6 shows the lowest activation free energy with 17.9 kcal/mol, closely followed by N7 is 20.5 kcal/mol and the O of phosphate group is 26.3 kcal/mol, respectively. It was also found that all the titanation processes are mildly endothermic. In addition, for the Ti-B(dGMP) in all separated products, the bond dissociation free energies (BDFE) of Ti-O(P, P = phosphate) is higher than those of Ti-N7/O6. In the second substitutions, the reactions leading to the didentate adducts are considered. For bidentate-bridging N7, O6 binding mode, the path of the metal Ti binding to O6 has the lower activation free energy (11.3 kcal/mol) than that of the metal Ti binding to N7 (15.3 kcal/mol). For the bidentate-bridging N7, O(P) binding mode, the path of the metal Ti binding to O(P) has the lower activation free energies (25.3 kcal/mol) than that of the metal Ti binding to N7 (26.2 kcal/mol).  相似文献   

5.
Synthesis of the trans 1-N-chrysenyl and 1-N-phenanthrenyl 3-acetoxy-4-phenyl-2-azetidinones has been achieved. Microwave-assisted reaction has proved useful in the synthesis of these compounds. Cell growth inhibition study has indicated selective anticancer activity against two leukemia and colon carcinoma cell lines. A mechanistic correlation of their anticancer activity has been described. Striking G2 blockade that is clearly distinct in cell cycle analysis and demonstrated only in sensitive cell lines has been observed. They do not induce apoptosis in sensitive or resistant lines. They also do not inhibit topoisomerases. Ames test has shown they are nonmutagenic.  相似文献   

6.
Gold(III) compounds constitute an emerging class of biologically active substances, of special interest as potential anticancer agents. During the past decade a number of structurally diverse gold(III) complexes were reported to be acceptably stable under physiological-like conditions and to manifest very promising cytotoxic effects against selected human tumour cell lines, making them good candidates as anti-tumour drugs. Some representative examples will be described in detail. There is considerable interest in understanding the precise biochemical mechanisms of these novel cytotoxic agents. Based on experimental evidence collected so far we hypothesize that these metallodrugs, at variance with classical platinum(II) drugs, produce in most cases their growth inhibition effects through a variety of "DNA-independent" mechanisms. Notably, strong inhibition of the selenoenzyme thioredoxin reductase and associated disregulation of mitochondrial functions were clearly documented in some selected cases, thus providing a solid biochemical basis for the pronounced proapoptotic effects. These observations led us to investigate in detail the reactions of gold(III) compounds with a few model proteins in order to gain molecular-level information on the possible interaction modes with possible protein targets. Valuable insight on the formation and the nature of gold-protein adducts was gained through ESI MS (electrospray ionization mass spectrometry) and spectrophotometric studies of appropriate model systems as it is exemplified here by the reactions of two representative gold(III) compounds with cytochrome c and ubiquitin. The mechanistic relevance of gold(III)-induced oxidative protein damage and of direct gold coordination to protein sidechains is specifically assessed. Perspectives for the future of this topics are briefly outlined.  相似文献   

7.
TOP-53 is a promising anticancer agent that displays high activity against non-small cell lung cancer in animal tumor models [Utsugi, T., et al. (1996) Cancer Res. 56, 2809-2814]. Compared to its parent compound, etoposide, TOP-53 is considerably more toxic to non-small cell lung cancer cells, is more active at generating chromosomal breaks, and displays improved cellular uptake and pharmacokinetics in animal lung tissues. Despite the preclinical success of TOP-53, several questions remain regarding its cytotoxic mechanism. Therefore, this study characterized the basis for drug action. Results indicate that topoisomerase II is the primary cytotoxic target for TOP-53. Furthermore, the drug kills cells by acting as a topoisomerase II poison. TOP-53 exhibits a DNA cleavage site specificity that is identical to that of etoposide. Like its parent compound, the drug increases the number of enzyme-mediated DNA breaks by interfering with the DNA religation activity of the enzyme. TOP-53 is considerably more efficient than etoposide at enhancing topoisomerase II-mediated DNA cleavage and exhibits high activity against human topoisomerase IIalpha and IIbeta in vitro and in cultured cells. Therefore, at least in part, the enhanced cytotoxic activity of TOP-53 can be attributed to an enhanced activity against topoisomerase II. Finally, TOP-53 displays nearly wild-type activity against a mutant yeast type II enzyme that is highly resistant to etoposide. This finding suggests that TOP-53 can retain activity against systems that have developed resistance to etoposide, and indicates that substituents on the etoposide C-ring are important for topoisomerase II-drug interactions.  相似文献   

8.
9.
We have previously shown that different vanadium(IV) complexes regulate osteoblastic growth. Since vanadium compounds are accumulated in vivo in bone, they may affect bone turnover. The development of vanadium complexes with different ligands could be an alternative strategy of use in skeletal tissue engineering. In this study, we have investigated the osteogenic properties of a vanadyl(IV)-ascorbate (VOAsc) complex, as well as its possible mechanisms of action, on two osteoblastic cell lines in culture. VOAsc (2.5-25 microM) significantly stimulated osteoblastic proliferation (113-125% basal, p<0.01) in UMR106 cells, but not in the MC3T3E1 cell line. VOAsc (5-100 micrioM) dose-dependently stimulated type-I collagen production (107-156% basal) in osteoblasts. After 3 weeks of culture, 5-25 microM VOAsc increased the formation of nodules of mineralization in MC3T3E1 cells (7.7-20-fold control, p<0.001). VOAsc (50-100 microM) significantly stimulated apoptosis in both cell lines (170-230% basal, p<0.02-0.002), but did not affect reactive oxygen species production. The complex inhibited alkaline and neutral phosphatases from osteoblastic extracts with semi-maximal effect at 10 microM doses. VOAsc induced the activation and redistribution of P-ERK in a time- and dose-dependent manner. Inhibitors of the mitogen activated protein kinases (MAPK) pathway (PD98059 and UO126) partially blocked the VOAsc-enhanced osteoblastic proliferation and collagen production. In addition, wortmanin, a PI-3-K inhibitor and type-L channel blocker nifedipine also partially abrogated these effects of VOAsc on osteoblasts. Our in vitro results suggest that this vanadyl(IV)-ascorbate complex could be a useful pharmacological tool for bone tissue regeneration.  相似文献   

10.
Genetic analysis has shown that the slower than normal rhythmic defecation behavior of the clk-1 mutants of Caenorhabditis elegans is the result of altered lipoprotein metabolism. We show here that this phenotype can be suppressed by drugs that affect lipoprotein metabolism, including drugs that affect HMG-CoA reductase activity, reverse cholesterol transport, or HDL levels. These pharmacological effects are highly specific, as these drugs affect defecation only in clk-1 mutants and not in the wild-type and do not affect other behaviors of the mutants. Furthermore, drugs that affect processes not directly related to lipid metabolism show no or minimal activity. Based on these findings, we carried out a compound screen that identified 190 novel molecules that are active on clk-1 mutants, 15 of which also specifically decrease the secretion of apolipoprotein B (apoB) from HepG2 hepatoma cells. The other 175 compounds are potentially active on lipid-related processes that cannot be targeted in cell culture. One compound, CHGN005, was tested and found to be active at reducing apoB secretion in intestinal Caco-2 cells as well as in HepG2 cells. This compound was also tested in a mouse model of dyslipidemia and found to decrease plasma cholesterol and triglyceride levels. Thus, target processes for pharmacological intervention on lipoprotein synthesis, transport, and metabolism are conserved between nematodes and vertebrates, which allows the use of C. elegans for drug discovery.  相似文献   

11.
12.
TAS-103 is a novel anticancer drug that kills cells by increasing levels of DNA cleavage mediated by topoisomerase II. While most drugs that stimulate topoisomerase II-mediated DNA scission (i.e., topoisomerase II poisons) also inhibit the catalytic activity of the enzyme, they typically do so only at concentrations above the clinical range. TAS-103 is unusual in that it reportedly inhibits the catalytic activity of both topoisomerase I and II and does so at physiologically relevant concentrations [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. Without a topoisomerase activity to relieve accumulating torsional stress, the DNA tracking systems that promote the action of TAS-103 as a topoisomerase II poison would be undermined. Therefore, the effects of TAS-103 on the catalytic activity of topoisomerase I and II were characterized. DNA binding and unwinding assays indicate that the drug intercalates into DNA with an apparent dissociation constant of approximately 2.2 microM. Furthermore, DNA strand passage assays with mammalian topoisomerase I indicate that TAS-103 does not inhibit the catalytic activity of the type I enzyme. Rather, the previously reported inhibition of topoisomerase I-catalyzed DNA relaxation results from a drug-induced alteration in the apparent topology of the nucleic acid substrate. TAS-103 does inhibit the catalytic activity of human topoisomerase IIalpha, apparently by blocking the DNA religation reaction of the enzyme. The lack of inhibition of topoisomerase I catalytic activity by TAS-103 explains how the drug is able to function as a topoisomerase II poison in treated cells.  相似文献   

13.
The reduction potentials, lipophilicities, cellular uptake and cytotoxicity have been examined for two series of platinum(IV) complexes that yield common platinum(II) complexes on reduction: cis-[PtCl(4)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OAc)(2)(NH(3))(2)], cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)], [PtCl(4)(en)], cis,trans-[PtCl(2)(OAc)(2)(en)] and cis,trans-[PtCl(2)(OH)(2)(en)] (en=ethane-1,2-diamine, OAc=acetate). As previously reported, the reduction occurs most readily when the axial ligand is chloride and least readily when it is hydroxide. The en series of complexes are marginally more lipophilic than their ammine analogues. The presence of axial chloride or acetate ligands results in a slighter higher lipophilicity compared with the platinum(II) analogue whereas hydroxide ligands lead to a substantially lower lipophilicity. The cellular uptake is similar for the platinum(II) species and their analogous tetrachloro complexes, but is substantially lower for the acetato and hydroxo complexes, resulting in a correlation with the reduction potential. The activities are also correlated with the reduction potentials with the tetrachloro complexes being the most active of the platinum(IV) series and the hydroxo being the least active. These results are interpreted in terms of reduction, followed by aquation reducing the amount of efflux from the cells resulting in an increase in net uptake.  相似文献   

14.
TAS-103 is a novel antineoplastic agent that is active against in vivo tumor models [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. This drug is believed to be a dual topoisomerase I/II-targeted agent, because it enhances both topoisomerase I- and topoisomerase II-mediated DNA cleavage in treated cells. However, the relative importance of these two enzymes for the cytotoxic actions of TAS-103 is not known. Therefore, the primary cellular target of the drug and its mode of action were determined. TAS-103 stimulated DNA cleavage mediated by mammalian topoisomerase I and human topoisomerase IIalpha and beta in vitro. The drug was less active than camptothecin against the type I enzyme but was equipotent to etoposide against topoisomerase IIalpha. A yeast genetic system that allowed manipulation of topoisomerase activity and drug sensitivity was used to determine the contributions of topoisomerase I and II to drug cytotoxicity. Results indicate that topoisomerase II is the primary cellular target of TAS-103. In addition, TAS-103 binds to human topoisomerase IIalpha in the absence of DNA, suggesting that enzyme-drug interactions play a role in formation of the ternary topoisomerase II.drug.DNA complex. TAS-103 induced topoisomerase II-mediated DNA cleavage at sites similar to those observed in the presence of etoposide. Like etoposide, it enhanced cleavage primarily by inhibiting the religation reaction of the enzyme. Based on these findings, it is suggested that TAS-103 be classified as a topoisomerase II-targeted drug.  相似文献   

15.
A number of organometallic derivatives involving 6-amino penicillinic acid (I), of the types η5-R)2M- (Cl)L?Et3NH+ (II), (η5-R)2M(Cl)L (III) and R′HgL [R = cyclopentadienyl (C5H5), indenyl (C9H7), R′ = phenyl (C6H5), p-acetoxyphenyl (p-CH3COOC6H4), o-hydroxyphenyl (o-HOC6H4), p-hydroxyphenyl (p-HOC6H4); M = Ti(IV), Zr(IV); LH = 6-amino penicillinic acid] have been synthesized and characterized. Conductance measurements indicate that while the (η5-R)2M(Cl)L?Et3NH+ complexes are 1:1 electrolytes, the remaining compounds are non-electrolytes. From IR and UV spectral studies it is concluded that the penicillin moiety is bidentate. PMR and CMR studies support the stoichiometry of the complexes. Fluorescence studies have been carried out for o- and p-HOC6H4HgL complexes and relevant photochemical parameters have been elucidated. X-ray diffraction studies have been made for the o-HOC6H4HgL complex. For the C6H5HgL, p-CH3COOC6H4HgL and p-HOC6H4HgL complexes, thermal studies (TG and DTA) have been carried out and kinetic parameters for thermal degradation have been enumerated. In addition, the fragmentation pattern of these complexes has been analysed on the basis of mass spectra. The C6H5HgL and p-CH3COOC6H4HgL complexes show positive bactericidal activities.  相似文献   

16.
17.
A new class of ribozymes produce 2',3'-cyclic phosphate upon self-catalyzed cleavage of RNA molecules, similar to those observed during enzymatic (RNase-catalyzed) as well as non-enzymatic hydrolyses of RNAs. This product suggests that the reaction intermediate/transition state is a pentacoordinated oxyphosphorane. In order to elucidate the energetics of these RNA cleaving reactions, the reaction coordinate has been simulated and a pentacoordinated intermediate has been characterized via ab initio molecular orbital calculations utilizing the dianionic hydrolysis-intermediate of methyl ethylene phosphate as a model compound. The calculated reaction coordinate indicates that the transition state for the P-O(2') bond cleavage is lower in energy than that for the P-O(5') bond cleavage under uncatalyzed conditions. Thus, the dianionic pentacoordinated phosphorus intermediate tends to revert back to the starting RNA by cleaving the P-O(2') bond rather than productively cleaving the P-O(5') bond. In order for ribozymes to effectively cleave RNA molecules, it is therefore mandatory to stabilize the leaving 5'-oxygen, e.g. by means of a divalent magnesium ion.  相似文献   

18.
19.
Functionalization of cyclopentadienyl (Cp) ligands and incorporation of these into a Ti(IV) center require careful design and selection of the appropriate synthetic routes to obtain the desired product in reasonably good yields. As part of our research efforts in the area of titanocene antitumor agents, we have revisited the synthesis of Cp rings with electron-withdrawing groups and their corresponding titanocene dichlorides, (Cp-R)2TiCl2 and (Cp-R)CpTiCl2, where R is CO2CH3 and CO2CH2CH3. These complexes were characterized by elemental analysis and 1H and 13C NMR and IR spectroscopies. This report presents the first detailed synthetic route for (Cp-CO2CH2CH3)CpTiCl2 and provides an alternate route for synthesis of (Cp-R)2TiCl2 complexes. The ability of these complexes to deliver Ti(IV) to apotransferrin was investigated to elucidate how the functionalized Cp ligands affect the titanium intake by apotransferrin. The subject complexes transfer Ti(IV) to human apotransferrin, loading both N- and C-lobes. The antitumor activity of these complexes against HT-29 cancer colon cells was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Carboethoxy Cp functionalization results in complexes with a toxicity comparable to that of titanocene dichloride. The carbomethoxy-functionalized complexes proved to be nonactive at the time intervals studied here, regardless of their ability to donate the titanium atom to human apotransferrin.  相似文献   

20.
Wang Y  He QY  Che CM  Chiu JF 《Proteomics》2006,6(1):131-142
There has been increasing interest in the potential applications of gold (III) complexes as anticancer drugs with higher cytotoxicity and fewer side effects than existing metal anticancer drugs. Our previous findings demonstrated that gold (III) porphyrin 1a preferentially induced apoptosis in a cancer cell line (SUNE1). In this study, we identified differentially expressed proteins related to the drug's cytotoxic action by comparing the protein alterations induced by gold (III) porphyrin 1a and cisplatin treatments. Several clusters of altered proteins were identified, including cellular structure and stress-related chaperone proteins, proteins involved in reactive oxygen species and enzyme proteins, translation factors, proteins that mediate cell proliferation or differentiation, and proteins participating in the internal degradation systems. Our results indicated that multiple factors leading to apoptosis were involved in drug cytotoxicity in SUNE1 cells. The balance between pro-apoptotic and anti-apoptotic signals determined the final fate of cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号