首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract A central tenet of life‐history theory is the presence of a trade‐off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade‐off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field‐based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others.  相似文献   

2.
The success of an ant colony depends on the simultaneous presence of reproducing queens and non-reproducing workers in a ratio that will maximize colony growth and reproduction. Despite its presumably crucial role, queen–worker caste ratios (the ratio of adult queens to workers) and the factors affecting this variable remain scarcely studied. Maintaining polygynous pharaoh ant (Monomorium pharaonis) colonies in the laboratory has provided us with the opportunity to experimentally manipulate colony size, one of the key factors that can be expected to affect colony level queen–worker caste ratios and body size of eclosing workers, gynes and males. We found that smaller colonies produced more new queens relative to workers, and that these queens and workers both tended to be larger. However, colony size had no effect on the size of males or on the sex ratio of the individuals reared. Furthermore, for the first time in a social insect, we confirmed the general life history prediction by Smith and Fretwell (Am Nat 108:499–506, 1974) that offspring number varies more than offspring size. Our findings document a high level of plasticity in energy allocation toward female castes and suggest that polygynous species with budding colonies may adaptively adjust caste ratios to ensure rapid growth.  相似文献   

3.
4.
The reproductive success of colonially breeding species depends in part upon a trade‐off between the benefit of a dilution effect against nestling predation within larger colonies and colony conspicuousness. However, there may be no net survivorship benefit of dilution if smaller colonies are sufficiently inconspicuous. This raises the question about how the size distribution of breeding colonies on a landscape might change as the predation danger for nestlings changes. In southwest British Columbia, Canada, bald eagle Haliaeetus leucocephalus populations have increased exponentially at ~5% per year in recent decades and prey upon nestlings of colonial breeding great blue herons Ardea herodias faninni. Motivated by field data on reproductive success in relation to colony size, modeling is used to ask under which circumstances trading off a dilution benefit against colony conspicuousness can improve population reproductive success. That is, which colonial nesting distribution, dispersed and cryptic versus clumped and conspicuous, best mitigates predation danger on nestlings? When predators are territorial, the modeling predicts a dispersed nesting strategy as attack rate increases, but not as predator numbers increase. When predators are non‐territorial, the modeling predicts a dispersed nesting strategy as predator numbers and/or attack rates increase. When predators are both territorial and non‐territorial, colonial nesting within a predator's territory improves reproductive success when attack rates are low. This suggests nesting in association with territorial predators may offer decreased levels of predation when compared with nesting amongst non‐territorial predators. Thus a change in the colony size distribution of colonially breeding species might be anticipated on a landscape experiencing a change in predation danger.  相似文献   

5.
Abstract The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that has been associated with losses of native ant species and other invertebrates from its introduced range. To date, various abiotic conditions have been associated with limitations to the spread of Argentine ants, however, competitive interactions with native ant fauna may also affect the spread of Argentine ants. Here, we experimentally manipulated colony sizes of Argentine ants in the laboratory to assess whether Argentine ants were able to survive and compete for resources with a widespread, dominant native ant, Iridomyrmexrufoniger’. The results showed that over 24 h, the proportions of Argentine ants that were alive, at baits, and at sugar water decreased significantly in the presence of Iridomyrmex. In addition, Argentine ant mortality increased over time, however, the proportion of the colony that was dead decreased with the largest colony size. Argentine ants were only able to overcome Iridomyrmex when their colony sizes were 5–10 times greater than those of the native ants. We also conducted trials in which colonies of Argentine ants of varying sizes were introduced to artificial baits occupied by Iridomyrmex in the field. The results showed that larger Argentine ant colonies significantly affected the foraging success of Iridomyrmex after the initial introduction (5 min). However, over the first 20 min, when the Argentine ants were present at the baits, and over the entire 50 min experimental period, the numbers of Iridomyrmex at baits did not differ significantly with the size of the Argentine ant colony. This is the first experimental study to investigate the role of colony size in the invasion biology of Argentine ants in Australia, and the results suggest that Iridomyrmex may reduce the spread of Argentine ants, and that Argentine ants may need to attain large colony sizes in order to survive in the presence of Iridomyrmex. We address the implications of these findings for the invasion success of Argentine ants in Australia, and discuss the ability of Argentine ants to attain large colony sizes in introduced areas.  相似文献   

6.
A complete understanding of the evolution of sociality in aphids requires a detailed knowledge of the patterns of soldier investment in their ecology. The eusocial bamboo aphidPseudoregma bambucicola has a morphologically specialized first-instar soldier caste. The proportion of soldiers was positively correlated with colony size. Within a colony, soldiers were evenly distributed among subcolonies; within each subcolony, however, their distribution was biased toward peripheries which were exposed to many predators. Field experiments introducing natural enemies such asEupeodes confrater (Diptera: Syrphidae) andSynonycha grandis (Coleoptera: Coccinellidae) revealed that the survival rate of these predators was negatively correlated with the density of soldiers, suggesting that soldiers can more or less defend their colonies by killing or removing a range of natural enemies. Observations suggest that large mature colonies attract more predators than newly established small colonies and that, within a colony, the predators attack each subcolony regardless of its position on bamboo shoots. This implies the presence of a positive correlation between colony size and predation risk. Thus, the investment in soldiers seems to reflect the attacking pattern of predators within a colony. These results agree with the defence-optimization hypothesis in soldier investment ofP. bambucicola colonies.  相似文献   

7.
Summary Queens ofLasius flavus (F.) andL. niger (L.) were observed to choose sunlit bare areas for colony foundation and shading was found to reduce their success in founding colonies. Large colonies of these species killed queens of the opposite species first thus favouring the co-existence brought about by their habitat selection.  相似文献   

8.
Grey EK 《Oecologia》2011,166(4):935-947
The success of exotic species can be influenced by both the abiotic environment and species interactions. Many studies have demonstrated significant effects of either type of factor on aspects of exotic success, but few have considered their relative effects on population growth rate, a more holistic measure of success. To quantify the relative effects of environment and direct competition on an exotic ascidian, Botrylloides violaceus, I manipulated direct contact interactions at four sites with different abiotic environments and tracked individual colonies over 3 years. I tested site and contact treatment effects on survival, growth and fecundity, and then conducted a life table response experiment on a periodic, size-structured population matrix model to test their effects on population growth rate. Both site and contact interaction were important to explaining variation in survival and growth. Contact interactions decreased the survival and growth of larger colonies but unexpectedly increased the survival of small colonies at some sites, which led to relatively weaker and spatially variable effects on overall population growth rates. Site effects on population growth rates were an order of magnitude larger than contact effects, and site variation in winter vital rates made the largest contributions to changes in population growth rate. The results of this study suggest that the abiotic environment plays a larger role in the success of B. violaceus. Thus, environmental variables, such as temperature and salinity, could be used to predict this exotic species’ success under different environmental scenarios, including global climate change.  相似文献   

9.
Many factors contribute to the success of a socially parasitic strategy, especially the ability of the parasite to invade a host colony. However, little research has focused on the choices that may be made by an invading parasite, specifically whether parasites actively discriminate between different host colonies and if they have a preference for colonies of a particular size. When an allodapine social parasite, Inquilina schwarzi, was presented with colonies of their host species, Exoneura robusta, the parasites were found to invade the larger host colonies. However, it could not be ascertained from this study whether the parasites were making an active decision concerning which colony to invade, or whether they were simply more attracted to the larger colonies due to potentially stronger odour cues. Regardless of the cause, the larger host colonies are more at risk of being invaded by a social parasite, which would give parasites greater resources for exploitation and could also provide selection against the large host colony sizes.  相似文献   

10.
In ants, individuals live in tightly integrated units (colonies) and work collectively for its success. In such groups, stable intraspecific variation in behaviour within or across contexts (personality) can occur at two levels: individuals and colonies. This paper examines how colony size and nestmate density influence the collective exploratory behaviour of Formica fusca (Hymenoptera: Formicidae), in the laboratory. The housing conditions of the colonies were manipulated to vary the size of colonies and their densities under a fully factorial design. The results demonstrate the presence of colony behavioural repeatability in this species, and contrary to our expectations, colonies were more explorative on average when they were kept at lower nestmate densities. We also found that experimental colonies created from larger source colonies were more explorative, which conveys that a thorough understanding of the contemporary behaviour of a colony may require knowing its social history and how it was formed. Our results also convey that the colony size and nestmate density can have significant effects on the exploratory behaviour of ant colonies.  相似文献   

11.
The ascidian Trididemnum solidum competes for space on Caribbean reefs and is capable of overgrowing live scleractinian corals. From 2006 to 2009, we monitored over 30,000 coral colonies and quantified competitive interactions with this ascidian at four reef sites along the Mexican Caribbean. The total number of competitive interactions increased in time, but the mean percentage of coral colonies involved in interactions remained lower than 1% in all reefs. Bottom cover by T. solidum was also low (mean < 0.5%) in all reef sites in all sampling years. We conclude that during the temporal scope of our study, the overall potential effect of T. solidum on the dynamics of Mexican Caribbean coral populations was minimal.  相似文献   

12.
1. Some lepidopteran species have larvae that live gregariously, especially in early instars. Colony‐living species may benefit from improved protection from predators, thermoregulation, and feeding facilitation, for example. 2. While many studies have compared solitary and gregarious life styles, few data exist as to the relationship between size of the larval colony and larval performance in gregarious species. The present study was aimed at understanding the importance of colony size for growth and survival of the northern pine processionary moth (Thaumetopoea pinivora) larvae. 3. Field studies, comparing three different sizes of colonies of T. pinivora larvae, showed that individuals in larger colonies had a higher survival rate compared with those living in smaller colonies and also a faster growth rate. 4. The higher survival rate of large colonies was attributed to improved protection from predacious arthropods. 5. In early spring, the young larvae bask in the sun to increase their body temperature. In field experiments the thermal gain was higher in large colonies, and individuals in such colonies also grew faster. As growth rate was not affected by colony size when the ability to bask was experimentally removed in a laboratory experiment, the higher growth rate of the larger colonies was probably due to improved thermoregulation rather than feeding facilitation. 6. The size of larval colonies of gregarious insects depends on natural mortality events as well as on female oviposition strategy. Our results show that decreasing colony size can lead to a reduction in growth rate and survival. It is therefore important to understand whether or not small colonies will benefit equally from the gregarious behaviour.  相似文献   

13.
Garry R. Russ 《Oecologia》1982,53(1):12-19
Summary The frequencies with which organisms of a species overgrew or were overgrown by organisms of other species in a marine epifaunal community were estimated. The ranking of the ability of the major taxonomic groups to overgrow others was basically hierarchical:ascidianssponges>bryozoans>barnacles, polychaetes, tubicolous amphipods, hydroids. In contrast, the ranking of the competitive ability of species in the community did not form a simple linear hierarchy and there was no single competitively dominant species (measured in terms of overgrowth). There were often no significant differences in the ability of species to overgrow each other within the three major taxonomic groups of sponges, ascidians and bryozoans. Such results were common also between the species of large sponges and ascidiams which dominated substrata immersed for periods longer than two years.A lack of a significant difference in the competitive ability of species was usually the result of (a) frequent formation of delay/ties or standoffs and (b) changes in the outcome of interactions due to change in the relative size of interacting colonies. In many two-species interactions the species which had the larger colony in a given encounter had a greater probability of winning.When the range of colony sizes of two species was similar there was often no significant difference between the competitive ability of each species. Such cases without a clearcut winner often represented a backloop in an otherwise hierarchical sequence of competitive ability, i.e. Species A beats Species B, Species B beats Species C, no significant differences in competitive ability between Species C and A. No examples of competitive networks of the form Species A beats Species B, Species B beats Species C, Species C beats Species A were found. Backloops in otherwise hierarchical sequences (no significant differences in competitive ability) occurred most frequently between species within the same major taxonomic groups and were the result of a very even balance in the generalised competitive mechanism of overgrowth.It seems probable that backloops in hierarchical sequences are more commonly due to the absence of clear competitive dominance in interactions between species (reversals in the outcome of overgrowth interactions and standoffs), rather than to direct backloops formed by a specialised or to a generalised competitive mechanism. Network-like arrangements of competitive ability formed by the type of processes described here are likely to contribute significantly to the high levels of species diversity observed in many marine epifaunal communities subject to low levels of physical disturbance.  相似文献   

14.
Optimal colony size in eusocial insects likely reflects a balance between ecological factors and factors intrinsic to the social group. In a seminal paper Michener (1964) showed for some species of social Hymenoptera that colony production of immature stages (productivity), when transformed to a per-female basis, was inversely related to colony size. He concluded that social patterns exist in the social insects that cause smaller groups to be more efficient than larger groups. This result has come to be known as “Michener’s paradox” because it suggests that selection on efficiency would oppose the evolution of the large and complex societies that are common in the social insects. Michener suggested that large colony size has other advantages, such as improved defense and homeostasis, that are favored by selection. For his analysis of swarm-founding wasps, Michener combined data from colonies of different species and different developmental stages in order to obtain adequate sample sizes; therefore, his study did not make a strong case that efficiency decreases with increasing colony size (across colonies) in these wasps. We tested Michener’s hypothesis on the Neotropical swarm-founding wasp Parachartergus fraternus, while controlling for stage of colony development. We found that small colonies were more variable in percapita productivity relative to larger colonies, but found no evidence for a negative relationship between efficiency and size across colonies. Received 1 February 2006; revised 5 May 2006; accepted 11 May 2006.  相似文献   

15.
Cronin AL  Fédérici P  Doums C  Monnin T 《Oecologia》2012,168(2):361-369
Organisms face a trade-off between investment in fewer, larger offspring, or more, smaller offspring. Most organisms can adjust investment through variation in the size and number of offspring in response to factors such as resource availability and competition. In some social animals, established colonies divide into groups of individuals that become autonomous, a process known as colony fission (also dependent colony foundation in social insects). Resource allocation under fission can be fine-tuned by adjusting the number of new groups (offspring number) and the number of individuals in each new group (offspring size). We assessed the influence of competition on resource allocation during fission in the ant Cataglyphis cursor, by allowing colonies to fission in experimental enclosures of high or low conspecific colony density. The pattern of colony fission was similar to that observed in the field: each fissioning colony produced a few new nests comprising a highly variable number of workers and a single queen, the old queen was often replaced, and new queens were produced in excess. The number of new nests produced depended on the available workforce in the parent colony but was not affected by differences in colony density. Comparison with data from fission under natural field conditions, however, indicates that colonies in enclosures produced fewer, larger new nests, suggesting that resource investment patterns during fission are indeed subject to extrinsic factors. The density of conspecific colonies in the immediate surroundings may be an unreliable estimate of competition intensity and other factors should be considered.  相似文献   

16.
In social animals, body size can be shaped by multiple factors, such as direct genetic effects, maternal effects, or the social environment. In ants, the body size of queens correlates with the social structure of the colony: colonies headed by a single queen (monogyne) generally produce larger queens that are able to found colonies independently, whereas colonies headed by multiple queens (polygyne) tend to produce smaller queens that stay in their natal colony or disperse with workers. We performed a cross‐fostering experiment to investigate the proximate causes of queen size variation in the socially polymorphic ant Formica selysi. As expected if genetic or maternal effects influence queen size, eggs originating from monogyne colonies developed into larger queens than eggs collected from polygyne colonies, be they raised by monogyne or polygyne workers. In contrast, eggs sampled in monogyne colonies were smaller than eggs sampled in polygyne colonies. Hence, eggs from monogyne colonies are smaller but develop into larger queens than eggs from polygyne colonies, independently of the social structure of the workers caring for the brood. These results demonstrate that a genetic polymorphism or maternal effect transmitted to the eggs influences queen size, which probably affects the social structure of new colonies.  相似文献   

17.
Abstract In a colony headed by a single monandrous foundress, theories predict that conflicts between a queen and her workers over both sex ratio and male production should be intense. If production of males by workers is a function of colony size, this should affect sex ratios, but few studies have examined how queens and workers resolve both conflicts simultaneously. We conducted field and laboratory studies to test whether sex-ratio variation can be explained by conflict over male production between queen and workers in the primitively eusocial wasp Polistes chinensis antennalis.
Worker oviposition rate increased more rapidly with colony size than did queen oviposition. Allozyme and micro-satellite markers revealed that the mean frequency of workers' sons among male adults in queen-right colonies was 0.39 ± 0.08 SE (n = 22). Genetic relatedness among female nestmates was high (0.654–0.796), showing that colonies usually had a single, monandrous queen. The mean sex allocation ratio (male investment/male and gyne investments) of 46 queen-right colonies was 0.47 ± 0.02, and for 25 orphaned colonies was 0.86 ± 0.04. The observed sex allocation ratio was likely to be under queen control. For queen-right colonies, the larger colonies invested more in males and produced reproductives protandrously and/or simultaneously, whereas the smaller colonies invested more in females and produced reproductives protogynously. Instead of positive relationships between colony size and worker oviposition rate, the frequency of workers' sons within queen-right colonies did not increase with colony size. These results suggest that queens control colony investment, even though they allow worker oviposition in queen-right colonies. Eggs laid by workers may be policed by the queen and/or fellow workers. Worker oviposition did not influence the outcome of sex allocation ratio as a straightforward function of colony size.  相似文献   

18.
In many colonial bird species there is considerable intraspecific variation in colony size and inter‐nest distance (colony density). Possible causes of this variation and its effects on hatching success (survival of eggs) and breeding success (probability of a pair raising chicks) were studied in 48 Avocet Recurvirostra avosetta colonies in Schleswig‐Holstein (Germany) between 1991 and 1996. Colony density was influenced by time of year and habitat (categories: island or mainland, close to or far from feeding grounds). Colonies on islands had the highest densities. When all available space at a colony site was used, colonies became very dense (mean nearest‐neighbour nest distance less than 1 m). Colony size (number of clutches) was influenced by time of year, but not by habitat. Hatching success was low in high density colonies and in very low density ‘colonies’ (single nests) and high over a broad range of intermediate nest densities. The low success rate of single nests was caused by a very high predation rate, whereas the low success rate in very dense colonies was caused by a high rate of nest abandonment. Nest abandonment in very dense colonies was associated with a high level of aggressiveness among Avocets during the egg‐laying period. Due to territorial behaviour, Avocets seemed to be expelled from the densest breeding sites. In very dense colonies, high frequencies of clutches of unusual size occurred due to conspecific nest parasitism. The number of Avocets taking part in attacks on potential egg predators was small and (in colonies of more than one clutch) depended neither on colony size nor on colony density. Despite a low hatching success in very dense colonies, individuals breeding in the densest colonies had significantly better chances of raising chicks than Avocets breeding in less dense colonies. Coloniality seemed to be obligatory for Avocets in order to ensure hatching success. The size and density of colonies seemed to be associated with the availability of suitable nesting habitats (islands).  相似文献   

19.
In tallgrass prairie, plant species interactions regulated by their associated mycorrhizal fungi may be important forces that influence species coexistence and community structure; however, the mechanisms and magnitude of these interactions remain unknown. The objective of this study was to determine how interspecific competition, mycorrhizal symbiosis, and their interactions influence plant community structure. We conducted a factorial experiment, which incorporated manipulations of abundance of dominant competitors, Andropogon gerardii and Sorghastrum nutans, and suppression of mycorrhizal symbiosis using the fungicide benomyl under two fire regimes (annual and 4-year burn intervals). Removal of the two dominant C4 grass species altered the community structure, increased plant species richness, diversity, and evenness, and increased abundance of subdominant graminoid and forb species. Suppression of mycorrhizal fungi resulted in smaller shifts in community structure, although plant species richness and diversity increased. Responses of individual plant species were associated with their degree of mycorrhizal responsiveness: highly mycorrhizal responsive species decreased in abundance and less mycorrhizal responsive species increased in abundance. The combination of dominant-grass removal and mycorrhizal suppression treatments interacted to increase synergistically the abundance of several species, indicating that both processes influence species interactions and community organization in tallgrass prairie. These results provide evidence that mycorrhizal fungi affect plant communities indirectly by influencing the pattern and strength of plant competitive interactions. Burning strongly influenced the outcome of these interactions, which suggests that plant species diversity in tallgrass prairie is influenced by a complex array of interacting processes, including both competition and mycorrhizal symbiosis. Received: 7 April 1999 / Accepted: 30 July 1999  相似文献   

20.
ABSTRACT The effects of colony size on individual fitness and its components were investigated in artificially established and natural colonies of the social spider Anelosimus eximius (Araneae: Theridiidae). In the tropical rain forest understory at a site in eastern Ecuador, females in colonies containing between 23-107 females had india significantly higher lifetime reproductive success than females in smaller colonies. Among larger colonies, this trend apparently reversed. This overall fitness function was a result of the conflicting effects of colony size on different components of fitness. In particular, the probability of offspring survival to maturity increased with colony size while the probability of a female reproducing within the colonies decreased with colony size. Average clutch size increased with colony size when few or no wasp parasitoids were present in the egg sacs. With a high incidence of egg sac parasitoids, this effect disappeared because larger colonies were more likely to be infected. The product of the three fitness components measured-probability of female reproduction, average clutch size, and offspring survival-produced a function that is consistent with direct estimates of the average female lifetime reproductive success obtained by dividing the total number of offspring maturing in a colony by the number of females in the parental generation. Selection, therefore, should favor group living and itermediate colony sizes in this social spider.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号