首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The hydrogen-deuterium (H-D) exchange kinetics of free and DNA-bound ethidium dimer and acridine-ethidium heterodimer were measured by stopped flow using fluorescence detection. This technique allowed a very accurate measurement of the exchange process. The H-D exchange kinetics were measured in various environments. In some cases, it was observed that the H-D exchange was much faster than the dissociation rate of dimer-DNA complexes. This showed that the exchange was taking place directly from the bound state. Furthermore, the action of a catalyst (imidazolium ion) on the rate of H-D exchange showed that a dynamic structural fluctuation of the ligand in its DNA complex was a necessary step on the exchange process.  相似文献   

3.
Liu YH  Konermann L 《FEBS letters》2006,580(22):5137-5142
This work reports the use of electrospray mass spectrometry for studying the conformational dynamics of enzymes by amide hydrogen/deuterium exchange (HDX) measurements. A rapid-mixing quench-flow approach allows comparisons to be made between the HDX kinetics of free enzymes with those under steady-state conditions. Experiments carried out on carboxypeptidase B in the absence of substrate and in the presence of saturating concentrations of hippuryl-Arg result in HDX kinetics that are indistinguishable. This finding implies that the conformational dynamics that mediate HDX are not significantly different in the resting state of the enzyme and during substrate turnover.  相似文献   

4.
Mazon H  Marcillat O  Forest E  Vial C 《Biochimie》2005,87(12):1101-1110
Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).  相似文献   

5.
SNARE proteins mediate fusion of intracellular eukaryotic membranes and their α-helical transmembrane domains are known to contribute to lipid bilayer mixing. Synthetic transmembrane domain peptides were previously shown to mimic the function of SNARE proteins in that they trigger liposome fusion in a sequence-specific fashion. Here, we performed a detailed investigation of the conformational dynamics of the transmembrane helices of the presynaptic SNAREs synaptobrevin II and syntaxin 1a. To this end, we recorded deuterium/hydrogen-exchange kinetics in isotropic solution as well as in the membrane-embedded state. In solution, the exchange kinetics of each peptide can be described by three different classes of amide deuteriums that exchange with different rate constants. These are likely to originate from exchange at different domains of the helices. Interestingly, the rate constants of each class vary with the TMD sequence. Thus, the exchange rate is position-specific and sequence-specific. Further, the rate constants correlate with the previously determined membrane fusogenicities. In membranes, exchange is retarded and a significant proportion of amide hydrogens are protected from exchange. We conclude that the conformational dynamics of SNARE TMD helices is mechanistically linked to their ability to drive lipid mixing.  相似文献   

6.
In recent years, the use of high-level ab initio calculations has allowed for the intrinsic conformational properties of nucleic acid building blocks to be revisited. This has provided new insights into the intrinsic conformational energetics of these compounds and its relationship to nucleic acids structure and dynamics. In this article we review recent developments and present new results. New data include comparison of various levels of theory on conformational properties of nucleic acid building blocks, calculations on the abasic sugar, known to occur in vivo in DNA, on the TA conformation of DNA observed in the complex with the TATA box binding protein, and on inosine. Tests of the Hartree-Fock (HF), second-order M?ller-Plesset (MP2), and Density Functional Theory/Becke3, Lee, Yang and Par (DFT/B3LYP) levels of theory show the overall shape of backbone torsional energy profiles (for gamma, epsilon, and chi) to be similar for the different levels, though some systematic differences are identified between the MP2 and DFT/B3LYP profiles. The east pseudorotation energy barrier in deoxyribonucleosides is also sensitive to the level of theory, with the HF and DFT/B3LYP east barriers being significantly lower (approximately 2.5 kcal/mol) than the MP2 counterpart (approximately 4.0 kcal/mol). Additional calculations at various levels of theory suggest that the east barrier in deoxyribonucleosides is between 3.0 and 4.0 kcal/mol. In the abasic sugar, the west pseudorotation energy barrier is found to be slightly lower than the east barrier and the south pucker is favored more than in standard nucleosides. Results on the TA conformation suggest that, at the nucleoside level, this conformation is significantly destabilized relative to the global energy minimum, or relative to the A- and B-DNA conformations. Deoxyribocytosine would destabilize the TA conformation more than other bases relative to the A-DNA conformation, but not relative to the B-DNA conformation.  相似文献   

7.
Understanding antigen-antibody interactions at the sub-molecular level is of particular interest for scientific, regulatory, and intellectual property reasons, especially with increasing demand for monoclonal antibody therapeutic agents. Although various techniques are available for the determination of an epitope, there is no widely applicable, high-resolution, and reliable method available. Here, a combination approach using amide hydrogen/deuterium exchange coupled with proteolysis and mass spectrometry (HDX-MS) and computational docking was applied to investigate antigen-antibody interactions. HDX-MS is a widely applicable, medium-resolution, medium-throughput technology that can be applied to epitope identification. First, the epitopes of cytochrome c-E8, IL-13-CNTO607, and IL-17A-CAT-2200 interactions identified using the HDX-MS method were compared with those identified by X-ray co-crystal structures. The identified epitopes are in good agreement with those identified using high-resolution X-ray crystallography. Second, the HDX-MS data were used as constraints for computational docking. More specifically, the non-epitope residues of an antigen identified using HDX-MS were designated as binding ineligible during computational docking. This approach, termed HDX-DOCK, gave more tightly clustered docking poses than stand-alone docking for all antigen-antibody interactions examined and improved docking results significantly for the cytochrome c-E8 interaction.  相似文献   

8.
NMR-detected hydrogen/deuterium (H/D) exchange of amide protons is a powerful way for investigating the residue-based conformational stability and dynamics of proteins in solution. Maize ferredoxin-NADP(+) reductase (FNR) is a relatively large protein with 314 amino acid residues, consisting of flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADP(+))-binding domains. To address the structural stability and dynamics of FNR, H/D exchange of amide protons was performed using heteronuclear NMR at pD(r) values 8.0 and 6.0, physiologically relevant conditions mimicking inside of chloroplasts. At both pD(r) values, the exchange rate varied widely depending on the residues. The profiles of protected residues revealed that the highly protected regions matched well with the hydrophobic cores suggested from the crystal structure, and that the NADP(+)-binding domain can be divided into two subdomains. The global stability of FNR obtained by H/D exchange with NMR was higher than that by chemical denaturation, indicating that H/D exchange is especially useful for analyzing the residue-based conformational stability of large proteins, for which global unfolding is mostly irreversible. Interestingly, more dynamic conformation of the C-terminal subdomain of the NADP(+)-binding domain at pD(r) 8.0, the daytime pH in chloroplasts, than at pD(r) 6.0 is likely to be involved in the increased binding of NADP(+) for elevating the activity of FNR. In light of photosynthesis, the present study provides the first structure-based relationship of dynamics with function for the FNR-type family in solution.  相似文献   

9.
A general method to explore the dynamic nature of amyloid fibrils is described, combining hydrogen/deuterium exchange and nuclear magnetic resonance spectroscopy to determine the exchange rates of individual amide protons within an amyloid fibril. Our method was applied to fibrils formed by the amyloid-β(1-40) peptide, the major protein component of amyloid plaques in Alzheimer’s disease. The fastest exchange rates were detected among the first 14 residues of the peptide, a stretch known to be poorly structured within the fibril. Considerably slower exchange rates were observed in the remainder of the peptide within the β-strand-turn-β-strand motif that constitutes the fibrillar core.  相似文献   

10.
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.  相似文献   

11.
This report documents the feasibility and advantages of integrating hydrogen/deuterium exchange (HDX) methodology with cyanylation (CN)-based methodology to determine the conformation of cystinyl proteins and intermediates during refolding. The CN-based methodology can be used to trap, identify, and preserve the disulfide structure of a given cystinyl protein folding intermediate, while the HDX methodology can be used to assess other conformational features of the intermediate. Specifically, in this study, CN-based methodology was used to trap a 1-disulfide bond and a 2-disulfide intermediate of long Arg(3) insulin-like growth factor-I (LR(3)IGF-I), which was then exposed to HDX using D(2)O at pD 6.8 and subsequently digested with pepsin before analysis by matrix-assisted laser desorption/ionization mass spectrometry. The HDX results show an increasing degree of secondary and tertiary structure as a function of disulfide bond formation. In addition, the HDX results for two overlapping peptic fragments suggest that a segment of the polypeptide exists in two conformations, which can be distinguished by HDX and pepsin. These results from HDX mass spectrometry are in reasonably good agreement with those from nuclear magnetic resonance studies of native LR(3)IGF-I and IGF-I, in which approximately 5000 times more material was used than in our study. Indications are that the integrated use of HDX and CN-based methodologies will be effective in studying the refolding of cystinyl proteins at the subnanomole level.  相似文献   

12.
Serpins are a class of protease inhibitors that initially fold to a metastable structure and subsequently undergo a large conformational change to a stable structure when they inhibit their target proteases. How serpins are able to achieve this remarkable conformational rearrangement is still not understood. To address the question of how the dynamic properties of the metastable form may facilitate the conformational change, hydrogen/deuterium exchange and mass spectrometry were employed to probe the conformational dynamics of the serpin human alpha(1)-antitrypsin (alpha(1)AT). It was found that the F helix, which in the crystal structure appears to physically block the conformational change, is highly dynamic in the metastable form. In particular, the C-terminal half of the F helix appears to spend a substantial fraction of time in a partially unfolded state. In contrast, beta-strands 3A and 5A, which must separate to accommodate insertion of the reactive center loop (RCL), are not conformationally flexible in the metastable state but are rigid and stable. The conformational lability required for loop insertion must therefore be triggered during the inhibition reaction. Beta-strand 1C, which anchors the distal end of the RCL and thus prevents transition to the so-called latent form, is also stable, consistent with the observation that alpha(1)AT does not spontaneously adopt the latent form. A surprising degree of flexibility is seen in beta-strand 6A, and it is speculated that this flexibility may deter the formation of edge-edge polymers.  相似文献   

13.
Five highly homologous epidermal growth factor receptor ligands were studied by mass spectral analysis, hydrogen/deuterium (H/D) exchange via attenuated total reflectance Fourier transform-infrared spectroscopy, and two-dimensional correlation analysis. These studies were performed to determine the order of events during the exchange process, the extent of H/D exchange, and associated kinetics of exchange for a comparative analysis of these ligands. Furthermore, the secondary structure composition of amphiregulin (AR) and heparin-binding-epidermal growth factor (HB-EGF) was determined. All ligands were found to have similar contributions of 310-helix and random coil with varying contributions of β-sheets and β-turns. The extent of exchange was 40%, 65%, 55%, 65%, and 98% for EGF, transforming growth factor-α (TGF-α), AR, HB-EGF, and epiregulin (ER), respectively. The rate constants were determined and classified as fast, intermediate, and slow: for EGF the 0.20 min−1 (Tyr), 0.09 min−1 (Arg, β-turns), and 1.88 × 10−3 min−1 (β-sheets and 310-helix); and for TGF-α 0.91 min−1 (Tyr), 0.27 min−1 (Arg, β-turns), and 1.41 × 10−4 min−1 (β-sheets). The time constants for AR 0.47 min−1 (Tyr), 0.04 min−1 (Arg), and 1.00 × 10−4 min−1 (buried 310-helix, β-turns, and β-sheets); for HB-EGF 0.89 min−1 (Tyr), 0.14 min−1 (Arg and 310-helix), and 1.00 × 10−3 min−1 (buried 310-helix, β-sheets, and β-turns); and for epiregulin 0.16 min−1 (Tyr), 0.03 min−1 (Arg), and 1.00 × 10−4 min−1 (310-helix and β-sheets). These results provide essential information toward understanding secondary structure, H/D exchange kinetics, and solvation of these epidermal growth factor receptor ligands in their unbound state.  相似文献   

14.
C. glutamicum meso-diaminopimelate dehydrogenase is an enzyme of the L-lysine biosynthetic pathway in bacteria. The binding of NADPH and diaminopimelate to the recombinant, overexpressed enzyme has been analyzed using hydrogen/deuterium exchange and electrospray ionization/mass spectrometry. NADPH binding reduces the extent of deuterium exchange, as does the binding of diaminopimelate. Pepsin digestion of the deuterated enzyme and enzyme-substrate complexes coupled with liquid chromatography/mass spectrometry have allowed the identification of eight peptides whose deuterium exchange slows considerably upon the binding of the substrates. These peptides represent regions known or thought to bind NADPH and diaminopimelate. One of these peptides is located at the interdomain hinge region and is proposed to be exchangeable in the "open," catalytically inactive, conformation but nonexchangeable in the "closed," catalytically active conformation formed after NADPH and diaminopimelate binding and domain closure. Furthermore, the dimerization region has been localized by this method, and this study provides an example of detecting protein-protein interface regions using hydrogen/deuterium exchange and electrospray ionization.  相似文献   

15.
During apoptotic stress, protein kinase Pak2 is cleaved by caspase 3 to form a heterotetramer that is constitutively activated following autophosphorylation. The active protein kinase migrates slightly slower than the inactive holoenzyme when analyzed by gel filtration, suggesting an expanded conformation. Activation of Pak2 comprises a series of structural changes resulting from caspase cleavage, ATP binding, and autophosphorylation of Pak2. Changes at each step were individually analyzed by amide hydrogen/deuterium exchange coupled with mass spectrometry and compared with inactive Pak2. The auto-inhibited form was shown to bind ATP in the active site, with minor changes in the glycine loop and the autoinhibitory domain (AID). Caspase cleavage produced significant changes in solvent accessibility in the AID and upper lobe of the catalytic domain. Cleavage of ATP-bound Pak2 relaxes the allosteric inhibition, as shown by increased solvent accessibility in the upper and lower lobes, including the G-helix, facilitating the autophosphorylation of two sites required for activation, Ser-141 in the regulatory domain and Thr-402 in the catalytic domain. Autophosphorylation increased the amide hydrogen/deuterium exchange solvent accessibility of the contact region between the AID and the G-helix, the E-F loop, and the N terminus. Thus, activation of Pak2 via caspase cleavage is associated with structural relaxation of Pak2 that allows for complete auto-phosphorylation, resulting in a more comprehensive solvent-exposed and conformationally dynamic enzyme.  相似文献   

16.
17.
Liu YH  Konermann L 《Biochemistry》2008,47(24):6342-6351
Conformational dynamics are thought to be a prerequisite for the catalytic activity of enzymes. However, the exact relationship between structural fluctuations and function is not well understood. In this work hydrogen/deuterium exchange (HDX) and electrospray ionization mass spectrometry (ESI-MS) are used for exploring the conformational dynamics of thermolysin. Amide HDX reflects the internal mobility of proteins; regions that undergo frequent unfolding-refolding show faster exchange than segments that are highly stable. Thermolysin is a zinc protease with an active site that is located between two lobes. Substrate turnover is associated with hinge bending that leads to a closed conformation. Product release regenerates the open form, such that steady-state catalysis involves a continuous closing/opening cycle. HDX/ESI-MS with proteolytic peptide mapping in the absence of substrate shows that elements in the periphery of the two lobes are most mobile. A comparison with previous X-ray data suggests that these peripheral regions undergo quite pronounced structural changes during the catalytic cycle. In contrast, active site residues exhibit only a moderate degree of backbone flexibility, and the central zinc appears to be in a fairly rigid environment. The presence of both rigid and moderately flexible elements in the active site may reflect a carefully tuned balance that is required for function. Interestingly, the HDX behavior of catalytically active thermolysin is indistinguishable from that of the free enzyme. This result is consistent with the view that catalytically relevant motions preexist in the resting state and that enzyme function can only be performed within the limitations given by the intrinsic dynamics of the protein. The data presented in this work indicate the prevalence of stochastic elements in the function of thermolysin, rather than supporting a deterministic mechanism.  相似文献   

18.
Two main types of conformational fluctuations--local and global are characteristic of the native protein structure and revealed by hydrogen exchange. The probability of those fluctuations changes to a different extent upon hemoglobin oxygenation, changing of pH, splitting of the intersubunit contacts. To compare with the influence of the heme removal the rate of the H-D exchange of the peptide NH atoms of the human apoHb was studied at the pH range 5.5-9.0 and temperature 10-38 degrees C by the IR spectroscopy. The removal of the heme increases the rate of the H-D exchange of the 80% peptide NH atoms with the factor retardation of the exchange rate (P) in the range approximately 10(2)-10(8). For the most of the peptide NH atoms the probability of the local fluctuations weakly depends on the temperature, the enthalpy changes upon all such local conformational transitions deltaH(op) degrees are 0-15 kcal/M. Characterized by the stronger temperature dependence the global fluctuations are not arised upon the temperature increases up to 38 degrees C at pH 7.0 inspite of in these conditions the slow denaturation and aggregation of apoHb begin to occur. Upon the destabilization of the apoHb structure by the simultaneous decreasing of pH to 5.5 and temperature to 10 degrees C the global fluctuations of the apoHb native structure described by deltaH(op)o < 0 begin to intensify. The mechanism of the overall intensification of the local fluctuations upon the heme removal, the peculiarity of the heat denaturation of apoHb in conditions, close to that existing upon the selfassembly of Hb in vivo, and analogy between low temperature global fluctuations and cold denaturation of globular proteins are discussed.  相似文献   

19.
Sims GE  Kim SH 《Nucleic acids research》2003,31(19):5607-5616
A global conformational space of 6253 dinucleoside monophosphate (DMP) units consisting of RNA and DNA (free and protein/drug-bound) was 'mapped' using high resolution crystal structures cataloged in the Nucleic Acid Database (NDB). The torsion angles of each DMP were clustered in a reduced three-dimensional space using a classical multi-dimensional scaling method. The mapping of the conformational space reveals nine primary clusters which distinguish among the common A-, B- and Z-forms and their various substates, plus five secondary clusters for kinked or bent structures. Conformational relationships and possible transitional pathways among the substates are also examined using the conformational states of DNA and RNA bound with proteins or drugs as potential pathway intermediates.  相似文献   

20.
Infrared spectroscopy in the interval from 1800 to 1300 cm-1 has been used to investigate the secondary structure and the hydrogen/deuterium exchange behavior of bacteriorhodopsin and bovine rhodopsin in their respective native membranes. The amide I' and amide II' regions from spectra of membrane suspensions in D2O were decomposed into constituent bands by use of a curve-fitting procedure. The amide I' bands could be fit with a minimum of three theoretical components having peak positions at 1664, 1638, and 1625 cm-1 for bacteriorhodopsin and 1657, 1639, and 1625 cm-1 for rhodopsin. For both of these membrane proteins, the amide I' spectrum suggests that alpha-helix is the predominant form of peptide chain secondary structure, but that a substantial amount of beta-sheet conformation is present as well. The shape of the amide I' band was pH-sensitive for photoreceptor membranes, but not for purple membrane, indicating that membrane-bound rhodopsin undergoes a conformation change at acidic pH. Peptide hydrogen exchange of bacteriorhodopsin and rhodopsin was monitored by observing the change in the ratio of integrated absorbance (Aamide II'/Aamide I') during the interval from 1.5 to 25 h after membranes were introduced into buffered D2O. The fraction of peptide groups in a very slowly exchanging secondary structure was estimated to be 0.71 for bacteriorhodopsin at pD 7. The corresponding fraction in vertebrate rhodopsin was estimated to be less than or equal to 0.60. These findings are discussed in relationship to previous studies of hydrogen exchange behavior and to structural models for both proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号