首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Light-microscopic autoradiography has revealed characteristic labelling patterns in adrenal medullary cells following the intravenous administration of different catecholamines. The uptake patterns for [3H] dopa, [3H] dopamine, [3H] noradrenaline and [3H] adrenaline have been compared. In all cases A cells were more active than NA cells and cells situated in the zone nearest the cortex demonstrated a markedly higher rate of uptake than central cells. It was concluded that adjacent chromaffin cells with very similar morphology may differ as much as 50 fold in their capacities to incorporate exogenous amines. The adrenergic nature of the innervation of the vessels of the adrenal cortex and capsule in the mouse was confirmed.  相似文献   

3.
Summary The ultrastructure of the pineal gland of 18 human fetuses (crown-rump lengths 30–178 mm) was investigated.The pineal gland exhibits a pyramidal shape and consists of an anterior and posterior lobe. Only one parenchymal cell type, the pinealocyte, was observed. Few neuroblasts were seen between the pinealocytes and in the extended perivascular space. The pinealocytes possess all the organelles necessary for hormone synthesis. No specific secretory granule could be observed. The organ is abundantly vascularized and richly innervated. The morphology of the capillaries indicates the existence of a blood-brain barrier.The ultrastructure of the human fetal pineal gland suggests that the gland has a secretory function in early intrauterine life. Acknowledgements. The author is grateful to Mrs. Yael Balslev and Miss Inger Ægidius for their able technical assistance. This investigation was supported in part by The Carl and Ellen Hertz's foundation and the Johann and Hanne Weimann foundation.  相似文献   

4.
Summary Neural elements within the parenchyma of the sebaceous gland have not been reported previously. Nerve endings have been observed only in the connective tissue surrounding the gland or in close association with the undifferentiated basal cells.In this study, electron microscopy revealed the possible presence of nerve endings (or terminal portions of neural elements) in the suprabasal level of functional sebaceous glands of pinnae of white rats. Morphologically, there are two distinct types of nerve endings. Type 1 is bordered by a membrane of relatively irregular contour and contains a single mitochondrion, various-sized vesicles, numerous microtubules, fine neurofilament-like fibrils, and occasional ribosome-like granules. Type II is also bordered by a membrane, but its contour was relatively smooth and rounded. Moreover, Type II contains many mitochondria, varying in size, density, and the arrangement of cristae. While ribosome-like granules are scattered throughout the structure in relative abundance, there are scarcely any fine neurofilament-like fibrils or microtubules. Whether these two structures are sensory or autonomic fibers could not be determined by electron microscopic examination.  相似文献   

5.
6.
Summary Electron microscopy was employed in a study of the pineal gland of the Mongolian gerbil (Meriones unguiculatus). It was determined that the gerbil pineal gland contains pinealocytes and glial cells with the pinealocytes being the predominant cell type. The pinealocytes contain numerous organelles traditionally considered as being either synthetic or secretory in function such as an extensive Golgi region, smooth (SER) and rough (RER) endoplasmic reticulum, secretory vesicles and microtubules. Other cytoplasmic components are also present in the pinealocytes (synaptic ribbons, subsurface cisternae) for which no function has been assigned. Dense-cored vesicles are rare. Vacuolated pinealocytes are present and appear to be intimately associated with the formation of the pineal concertions. Evidence presented supports the proposal that the concretions form within the vacuoles. Once the concretions reach an enlarged state, the vacuolated pinealocytes break down and the concretions are thus extruded into the extracellular space where they apparently continue to increase in size. The morphology of the glial cells was interpreted as indicative of a high synthetic activity. The glial cells contain predominantly the rough variety of endoplasmic reticulum and form an expansion around the wide perivascular area.Supported by NSF grant PCM 77-05734  相似文献   

7.
Summary By means of morphometric analytical procedures, a diurnal rhythm in the cellular volume of gerbil pinealocytes was determined. This rhythm has been attributed primarily to a change in the cytoplasmic volume of the pinealocytes which is low during the daylight hours and increases to reach a peak during the middle of the dark period. At the ultrastructural level, six cytoplasmic components of the pinealocytes were found to exhibit a rhythm: free cytoplasm, smooth endoplasmic reticulum (SER), rough endoplasmic reticulum (RER) and ribosomes, secretory vesicles, microtubules, and mitochondria. The presumptive secretory vesicles and the microtubules reached a peak in volume one hour before lights-off. It is suggested that lights-on and lights-off both signal a decrease in size and/or number of the secretory vesicles. The SER and RER/ribosomes reached their peak volume one hour after lights-off which is interpreted as indicating a peak in indoleamine synthesis and protein synthesis, respectively. The volume of free cytoplasm exhibits two peaks; one occurs one hour before lights-off while the second peak occurs in the middle of the dark phase. It is suggested that, although part of the secretory product of the pinealocyte may be present in dense-cored vesicles, other locations could include the free cytoplasm and clear secretory vesicles.Supported by NSF grant #PCM 77-05734  相似文献   

8.
Summary In the present study the central innervation of the guinea-pig pineal gland was investigated. The habenulae and the pineal stalk contain myelinated and non-myelinated nerve fibres with few dense-cored and electron-lucent vesicles. Some myelinated fibres leave the main nerve fibre bundles, lose their myelin-sheaths and terminate in the pineal gland. Although direct proof is lacking, the non-myelinated fibres appear to end near the site where the bulk of the myelinated fibres are located. Here a neuropil area exists where synapses between non-myelinated fibre elements are abundant. Neurosecretory fibres were also seen. The results support the concept of functional interrelationships between hypothalamus, epithalamus and the pineal gland.  相似文献   

9.
Summary Synaptic ribbons (SR), functionally enigmatic structures of mammalian pinealocytes, were studied electron microscopically with regard to number, intracellular localization and topographical relationships, both under normal and experimental conditions. Pineal glands of guinea-pigs serving as controls contained 1.75 ribbon fields/unit area in the males and 2.58 in the females. In animals subjected to continuous illumination for 64 days the number of ribbon fields increased 20-fold in the males and 9-fold in the females. Continuous darkness (26 to 70 days) had varying effects; in some animals SR increased either strongly or moderately, in others they appeared unchanged. Under continuous illumination a higher percentage of ribbon fields bordered the cell membrane than in the controls. Moreover, paired ribbon fields occurred. The topographical analysis revealed that 98 % of the ribbon fields bordering the cell membrane lay opposite another pinealocyte and the remainder opposite nerve fibres, blood vessels and collagenous fibres. It is suggested that SR of mammalian pinealocytes do not represent non-functioning phylogenetic relics but true organelles possibly involved in coupling adjacent pinealocytes functionally.This study was supported by a grant from the Deutsche Forschungsgemeinschaft, Bonn.  相似文献   

10.
Summary The presence of melatonin is demonstrated in the pineal gland, the retina and the Harderian gland in some mammalian and non-mammalian vertebrates, using a specific fluorescence labelled antibody technique. Four different potent antibodies against melatonin have been used and compared. In the pineal gland of hamsters, mice, rats and snakes, specific fluorescence, mostly restricted to the cytoplasm of the cells, is detected in pinealocytes. Fluorescence is also detected in the pineal organ of fishes, tortoises and lizards, but it has not been possible, from cryostat sections of fresh tissue, to assert which kind of cell is reacting (photoreceptor cells or interstitial ependymal cells). In the retina, fluorescence is almost exclusively restricted to the outer nuclear layer. In the Harderian gland of mammals and reptiles, fluorescence is localized in the secretory cells of the alveoli and mostly restricted to the cytoplasm surrounding the nucleus. These results are discussed in relation to the concept of melatonin synthesis at extrapineal sites independent of pineal production.Parts of this work have been presented in the Xth Conference of Comparative Endocrinologists, Sorrento, May 20–25, 1979 (Vivien-Roels and Dubois 1980) and the VIth International Congress of Endocrinology, Melbourne, February 10–16, 1980 (Vivien-Roels et al. 1980)The author wishes to thank Professor Lutz Vollrath who has accepted her in his laboratory for a short period, Doctor George M. Bubenik for his suggestions and critical remarks, Dr. L.J. Grota for producing the melatonin diazobenzoic acid-BSA and Dr. Castro for preparing one of the melatonin derivates  相似文献   

11.
Summary Serial sections of 90 Sprague-Dawley rat brains with the pineal in situ were scanned to determine the occurrence and regional distribution of calcareous concretions within the pineal gland and its surrounding leptomeningeal tissue. In 90 % of the cases examined concretions were found in varying number and appearance, predominantly lying in the dorsal region of the pineal gland and in the distal portion of the pineal stalk.Discussing the hypothesis advanced by Lukaszyk and Reiter (1975) that the origin of pineal concretions may be related to a neurosecretory process involving a pineal carrier protein, called neuroepiphysin, it is thought that, in view of the intra- and extra-pineal occurrence of concretions, processes other than secretion should be considered. Since in the pineal organ lymphatics are lacking it may well be that, due to a reduced drainage of tissue fluid, the coagulation of intercellular organic debris mingled with minerals increases with age.Supported by a grant (Vo 135/4) of the Deutsche Forschungsgemeinschaft within the Schwerpunktprogramm Neuroendokrinologie  相似文献   

12.
Summary In the present study an attempt was made to demonstrate melatonin in the rat pineal gland by means of immunohistochemistry. The anti-body used was raised against 5-methoxy-N-acetyltryptophan which is chemically similar to melatonin. Specific fluorescence was demonstrable only in pineals from rats killed during the night, when melatonin formation is high. It was restricted to parenchymal cells lying in a marginal zone of the organ. These results are discussed in relation to a subdivision of the pineal parenchyma into cortical and medullary areas.Supported by a grant of the Deutsche Forschungsgemeinschaft (VO 135/4) within the Schwerpunktprogramm Neuroendokrinologie  相似文献   

13.
An immunohistochemical study of the cat pineal gland was performed using a rabbit polyclonal antibody directed against neuropeptide Y (NPY) and an antibody directed against the C-terminal flanking peptide of neuropeptide Y (CPON). Numerous NPY- and CPON-immunoreactive (IR) nerve fibers were demonstrated throughout the gland and in the pineal capsule. The number of IR nerve fibers in the capsule was high and from this location fibers were observed to penetrate into the gland proper via the pineal connective tissue septa, often following the blood vessels. From the connective tissue septa IR fibers intruded into the parenchyma between the pinealocytes. Many IR nerve fibers were observed in the pineal stalk and in the habenular as well as the posterior commissural areas. The number of NPY/CPON-IR nerve fibers in pineal glands from animals bilaterally ganglionectomized two weeks before sacrifice was low. The source of most of the extrasympathetic NPY/CPONergic nerve fibers is probably the brain from where they enter the pineal via the pineal stalk. However, an origin of some of the fibers from parasympathetic ganglia cannot be excluded due to the presence of a few IR fibers in the pineal capsule of ganglionectomized animals. It is concluded that the cat pineal is richly innervated with NPYergic nerve fibers mostly of sympathetic origin. The posttranslational processing of the NPY promolecule results in the presence of both NPY and CPON in intrapineal nerve fibers.  相似文献   

14.
Summary In a total of 96 rat pineals studied 31 were found to contain striated muscle fibers or their precursors. The muscle fibers were most frequently present in the stalk region and more frequently found in the left than in the right hemisphere. Size measurements revealed that the lengths of pineal muscle cell nuclei differ only slightly from those of the sphincter muscle of the iris. However, the yellowish appearance of pineal muscle cell nuclei under darkfield investigation, a phenomenon observed in all muscular tissues of mesenchymal origin and connective tissue cells, may support the hypothesis that pineal musculature is of mesenchymal rather than ectodermal origin.Supported by a grant (Vo 135/4) of the Deutsche Forschungsgemeinschaft within the Schwerpunktprogramm Neuroendokrinologie  相似文献   

15.
Summary The pineal gland of the mole, a mammal which lives in permanent darkness, has been studied using fluorescence histochemistry. An extensive catecholaminergic innervation is demonstrated. A yellow formaldehyde-induced fluorescence, characteristic of indoleamines, was not observed. If formaldehyde vapour treatment was omitted in the procedure, numerous cells containing yellow-orange autofluorescent material could be shown. The nature and possible function of this material is discussed.This paper is dedicated in great admiration and appreciation to Prof. Dr. W. Bargmann on the occasion of his 70th birthday.  相似文献   

16.
松果体昼夜节律生物钟分子机制的研究进展   总被引:3,自引:0,他引:3  
Wang GQ  Tong J 《生理科学进展》2004,35(3):210-214
在各种非哺乳类脊椎动物中 ,松果体起着中枢昼夜节律振荡器的作用。近来 ,在鸟类松果体中相继发现了几种钟基因 ,如Per、Cry、Clock和Bmal等 ,其表达的时间变化规律与哺乳类视交叉上核 (SCN)的非常相似。钟的振荡由其自身调控反馈环路的转录和翻译组成 ,鸟类松果体和哺乳类SCN似乎具有共同的钟振荡基本分子构架 ;若干钟基因产物作为正向或负向调节子影响钟的振荡 ;昼夜性的控时机制同时也需要翻译后事件的参与。这些过程对钟振荡器的稳定性和 /或钟导引的光输入通路有着重要的调控作用  相似文献   

17.
18.
哺乳动物昼夜节律组构中的下丘脑视交叉上核和松果腺   总被引:1,自引:0,他引:1  
Zhou XJ  Yu GD  Yin QZ 《生理科学进展》2001,32(2):116-120
哺乳动物下丘脑视交叉上核(SCN)是昼夜节律最主要的起搏器,控制着机体的生理和行为的节律。它具有自身内在的节律性,同时也受光照周期信号和一些内源性化学物质的调节。检查腺分泌裉黑素(MEL)受SCN的调控,MEL通过作用于SCN上高亲和性MEL受体,启动第二、第三信使系统,调整SCN的昼夜节律活动。这种调整具有时间敏感性。  相似文献   

19.
Summary The effects of vinblastine treatment on acinar cells of the rat exorbital lacrimal gland were studied by electron microscopy. Experimental animals of both sexes were given single intraperitoneal injections of (1) vinblastine (4mg/kg body weight) at 1 to 24 h before sacrifice; (2) pilocarpine (20 mg/kg b.w.) for 1 h; or (3) vinblastine for l h followed by pilocarpine for 1 h.Vinblastine treatment caused a number of changes including autophagocytosis, formation of intracisternal granules, and alteration of secretory granules. These changes varied in extent and onset between male and female rats. In addition, the Golgi apparatus was reduced in size and dispersed throughout the cytoplasm. Mitotic figures were commonly observed. Moreover, vinblastine inhibited the pilocarpine-stimulated degranulation of the acinar cells.In view of the known anti-microtubular action of vinblastine, these results suggest that microtubules are involved in various aspects of the transport, packaging, and secretion of exportable proteins in the lacrimal gland. Additionally, autophagocytosis and alteration of secretory granules may partially result from the interaction of vinblastine with membranes.The authors thank Mr. Steve Coriell and Mr. Steve Floyd for preparing the micrographs. Robert Kelly also thanks Dr. George Chapman for his support during the initial phase of this project.  相似文献   

20.
Summary Muscle spindles from lumbricalis muscles of the rat were incubated for acetylcholinesterase with a modified thiocholine-method of Lewis and Shute and examined by light and electron microscopy.All types of motor nerve ending showed heavy deposits of reaction product in the synaptic cleft. The underlying sarcoplasmic reticulum, transverse tubular system, and, when present, the envelope of sole plate nuclei were also stained.In the sensory region, the reaction was negative in the interface between the plasma membranes of the primary sensory terminal and muscle. One of two secondary sensory endings identified showed distinct reaction product in the cleft; the other secondary sensory ending showed no such reaction.Precipitates were present on the sarcolemma of the intrafusal muscle fibers in the polar and adjacent myotube regions, but not at the spindle equator. Extrafusal and intrafusal myelinated -nerve fibers and preterminal motor axons showed staining of the axolemma. Fibers with thick myelin sheaths and preterminal sensory axons were free of acetylcholinesterase activity, as were the unmyelinated nerve fibers.We wish to thank Mrs. D. Schilling and Mrs. Ch. Beyer for technical assistanc  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号