首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I Canosa  F Rojo    J C Alonso 《Nucleic acids research》1996,24(14):2712-2717
The beta recombinase from the broad host range Grampositive plasmid pSM19035 catalyzes intramolecular site-specific recombination between two directly or inversely oriented recombination sites in the presence of a chromatin-associated protein (Hbsu). The recombination site had been localized to a 447 bp DNA segment from pSM19035. This segment includes a 90 bp region that contains two adjacent binding sites (I and II) for beta protein dimers. Using in vitro recombination assays, we show that this 90 bp region is necessary and sufficient for beta protein-mediated recombination; this defines the six site as the region required for beta protein binding. The point of crossing over has been localized to the center of site I. Hbsu has a strong binding affinity for an unknown site located within the 447 bp segment containing the six site. We discuss the possibility that Hbsu recognizes an altered DNA structure, rather than a specific sequence, generated in the synaptic complex.  相似文献   

2.
The beta recombinase from plasmid pSM19035 catalyzes intramolecular site-specific recombination between two directly or inversely oriented six sites in the presence of a chromatin-associated protein (Hbsu, HU or HMG-1). The six site is a DNA segment containing two binding sites (I and II) for beta protein dimers. We show that beta recombinase binds sequentially to both sites, having a different affinity for each one. Hydroxyl radical footprints show a different protection pattern at each site. Positions critical for beta protein binding have been identified by methylation interference and missing nucleoside assays. The results indicate that the protein recognizes each site in a different way. Comparison of the beta protein recombination site with that of DNA resolvases and DNA invertases of the Tn3 family, to which it belongs, shows that these sequences can be divided into two regions. One corresponds to the crossover point and is similar for all recombinases of the family. The other region differs in the different subfamilies and seems to have an architectural role in aligning the crossover sites at the synaptic complex. The different ways to assemble this complex could explain why each system leads to a particular recombination event: DNA resolution (resolvases), inversion (invertases) or both (beta recombinase).  相似文献   

3.
The serine recombinase Sin requires a non-specific DNA-bending protein such as Hbsu for activity at its recombination site resH. Hbsu, and Sin subunits bound at site II of resH, together regulate recombination, ensuring selectivity for directly repeated resH sites by specifying assembly of an intertwined synapse. To investigate the role of the DNA-bending protein in defining the architecture of the synapse, we constructed a chimaeric recombination site (resF) which allows Hbsu to be substituted by IHF, binding specifically between site I (the crossover site) and site II. Two Sin dimers and one IHF dimer can bind together to the closely adjoining sites in resF, forming folded complexes. The precise position of the IHF site within the site I-site II spacer determines the conformation of these complexes, and also the reactivity of the resF sites in recombination assays. The data suggest that a sharp bend with a specific geometry is required in the spacer DNA, to bring the Sin dimers at sites I and II together in the correct relative orientation for synapse assembly and regulation, consistent with our model for a highly condensed synapse in which Hbsu/IHF has a purely architectural function.  相似文献   

4.
In the presence of a sequence-independent chromatin-associated protein, such as Hbsu or HMGB, the β recombinase catalyses resolution between two directly oriented recombination sites (six sites) and both resolution and DNA inversion between two inversely oriented six sites. Assembly of the synaptic complex requires binding of the β recombinase to the six sites and the presence of Hbsu. Whether resolution or inversion will take place depends on the relative orientation of the two six sites, the level of DNA supercoiling and the amounts of Hbsu. In this work, the topologies of the products of the resolution and inversion reactions were analysed. The resolution reaction generated mainly singly catenated DNA circles, while DNA inversion gave rise to unknotted circles and small amounts of DNA molecules containing 3- or 5-noded knots. In spite of the distinctive features of the β system, the topology of synapsis and strand exchange during the resolution reaction is similar to that of Tn3 and γδ resolvases. The ability of the β recombinase to catalyse both inversion and resolution reactions probably reflects different possible architectures of the synaptic complex, which to a large extent depends on Hbsu.  相似文献   

5.
A M Segall  S D Goodman    H A Nash 《The EMBO journal》1994,13(19):4536-4548
Integration host factor (IHF) is required in lambda site-specific recombination to deform the DNA substrates into conformations active for recombination. HU, a homolog of IHF, can also deform DNA but binds without any apparent sequence specificity. We demonstrate that HU can replace IHF by cooperating with the recombinase protein, integrase, to generate a stable and specific complex with electrophoretic mobility and biochemical activity very close to the complex formed by IHF and integrase. The eukaryotic HMG1 and HMG2 proteins differ entirely in structure from HU but they also bind DNA non-specifically and induce or stabilize deformed DNA. We show that the eukaryotic HMG1 and HMG2 proteins cooperate with integrase at least as well as does HU to make a defined structure. We also find that the eukaryotic core histone dimer H2A-H2B can replace IHF, suggesting that the histone dimer is functional outside the context of a nucleosome. HU and the HMG proteins not only contribute to the formation of stable complexes, but they can at least partially replace IHF for the integrative and excisive recombination reactions. These results, together with our analysis of nucleoprotein complexes made with damaged recombination sites, lead us to conclude that the cooperation between HU and integrase does not depend on protein-protein contacts. Rather, cooperation is manifested through building of higher order structures and depends on the capacity of the non-specific DNA binding proteins to bend DNA. While all these non-specific binding proteins appear to fulfil the same bending function, they do so with different efficiencies. This probably reflects subtle structural differences between the assembled complexes.  相似文献   

6.
The Sin recombinase from Staphylococcus aureus builds a distinctive DNA-protein synaptic complex to regulate strand exchange. Sin binds at two sites within an 86 basepair (bp) recombination site, resH. We propose that inverted motifs at the crossover site, and tandem motifs at the regulatory site, are recognized by structurally disparate Sin dimers. An essential architectural protein, Hbsu, binds at a discrete central site in resH. Positions of Hbsu-induced DNA deformation coincide with natural targets for Tn552 integration. Remarkably, Sin has the same topological selectivity as Tn3 and gammadelta resolvases. Our model for the recombination synapse has at its core an assembly of four Sin dimers; Hbsu plays an architectural role that is taken by two resolvase dimers in models of the Tn3/gammadelta synapse.  相似文献   

7.
In the presence of an accessory DNA bending protein, the bacterial site-specific beta recombinase catalyzes resolution and DNA inversion. Five different maize high mobility group B (HMGB) proteins were examined for their potential to facilitate beta recombination in vitro using DNA substrates with different intervening distances (73-913 bp) between two directly oriented recombination (six) sites. All analyzed HMGB proteins (HMGB1 to HMGB5) could promote beta recombination, but depending on the DNA substrate with different efficiencies. The HMGB1 protein displayed an activity comparable to that of the natural promoting protein Hbsu, whereas the other HMGB proteins were less effective. Phosphorylation of the HMGB1 protein resulted in an increased efficiency of HMGB1 to promote beta recombination. Analyses of DNA substrates with closely spaced six sites demonstrated that in the presence of HMGB1 the recombination rate was correlated to the distance between the six sites, but independent of the helical orientation of the six sites. Using a Bacillus subtilis strain defective in Hbsu, the coexpression of beta recombinase and HMGB1 (or a truncated HMGB1 derivative) revealed that a plant HMG-box domain protein is sufficient for assisting beta to catalyze recombination in vivo. Our results using beta recombination as a model system suggest that the various plant HMGB proteins (and their posttranslationally modified versions) have the potential of forming a repertoire of different DNA structures, which is compatible with the idea that the HMGB proteins can act as architectural factors in a variety of nucleoprotein structures.  相似文献   

8.
A M Segall  H A Nash 《The EMBO journal》1993,12(12):4567-4576
Bacteriophage lambda uses site-specific recombination to move its DNA into and out of the Escherichia coli genome. The recombination event is mediated by the recombinase integrase (Int) together with several accessory proteins through short specific DNA sequences known as attachment sites. A gel mobility shift assay has been used to show that, in the absence of accessory proteins, Int can align and hold together two DNA molecules, each with an attachment site, to form stable non-covalent 'bimolecular complexes'. Each attachment site must have both core and arm binding sites for Int to participate in a bimolecular complex. These stable structures can be formed between pairs of attL and attP attachment sites, but cannot include attB or attR sites; they are inhibited by integration host factor (IHF) protein. The bimolecular complexes are shown to represent a synaptic intermediate in the reaction in which Int protein promotes the IHF-independent recombination of two attL sites. These complexes should enable a detailed analysis of synapsis for this pathway.  相似文献   

9.
The integrase protein of bacteriophage lambda (Int) catalyzes site-specific recombination between lambda phage and Escherichia coli genomes. Int is a tyrosine recombinase that binds to DNA core sites via a C-terminal catalytic domain and to a collection of arm DNA sites, distant from the site of recombination, via its N-terminal domain. The arm sites, in conjunction with accessory DNA-bending proteins, provide a means of regulating the efficiency and directionality of Int-catalyzed recombination. Recent crystal structures of lambda Int tetramers bound to synaptic and Holliday junction intermediates, together with new biochemical data, suggest a mechanism for the allosteric control of the recombination reaction through arm DNA binding interactions.  相似文献   

10.
The Bacillus subtilis hbs gene encodes an essential chromatin-associated protein termed Hbsu. Hbsu, the counterpart of the Escherichia coli HU protein, binds DNA in a non-specific way but has a clear preference for bent, kinked or altered DNA sequences. To investigate the role of Hbsu in DNA repair and DNA recombination we have constructed a series of site-directed mutants in the hbs gene and used these mutant genes to substitute the wild-type chromosomal hbs gene. The hbs47 mutation, which codes for a mutant protein in which residue Phe-47 has been replaced by Trp, does not cause any discernible phenotype. Additional substitution of residue Arg-55 by Ala (hbs4755 mutation) rendered cells deficient in DNA repair, homologous recombination and (i protein-mediated site-specific recombination. We have also tested the effect on DNA repair of the hbs4755 mutation in combination with mutations in different functions of homologous DNA recombination (recA, recF, recG, recti and addAB). The hbs4755 mutation did not modify the sensitivity of recH and addAB cells to the DNA-damaging agents methylmethane sulphonate (MMS) or 4-nitroquinoline-1-oxide (4NQO), and it only marginally affected recF and recG cells. The hbs4755 mutation blocked intermolecular recombination in recH cells and markedly reduced it (20- to 50-fold) in recF and recG cells, but had no effect on addAB cells. Taken together, these data indicate that the Hbsu protein is required for DNA repair and for homologous DNA recombination.  相似文献   

11.
C Alén  D J Sherratt    S D Colloms 《The EMBO journal》1997,16(17):5188-5197
Xer site-specific recombination at ColE1 cer converts plasmid multimers into monomers, thus ensuring the heritable stability of ColE1. Two related recombinase proteins, XerC and XerD, catalyse the strand exchange reaction at a 30 bp recombination core site. In addition, two accessory proteins, PepA and ArgR, are required for recombination at cer. These two accessory proteins are thought to act at 180 bp of accessory sequences adjacent to the cer recombination core to ensure that recombination only occurs between directly repeated sites on the same molecule. Here, we demonstrate that PepA and ArgR interact directly with cer, forming a complex in which the accessory sequences of two cer sites are interwrapped approximately three times in a right-handed fashion. We present a model for this synaptic complex, and propose that strand exchange can only occur after the formation of this complex.  相似文献   

12.
The bacteriophage P1-encoded recombinase Cre forms a simple DNA-protein complex at the specific recognition site loxP. Furthermore, Cre is able to mediate a synaptic union of two loxP sites. When two loxP sites are on the same linear DNA molecule, Cre binds the two sites together to form a circular protein-DNA complex. These complexes can be resolved into a linear DNA molecule and a closed circular DNA molecule, the end products of site-specific recombination.  相似文献   

13.
The site-specific recombinase Cre must employ control mechanisms to impose directionality on recombination. When two recombination sites (locus of crossing over in phage P1, loxP) are placed as direct repeats on the same DNA molecule, collision between loxP-bound Cre dimers leads to excision of intervening DNA. If two sites are placed as inverted repeats, the intervening segment is flipped around. Cre catalyzes these reactions in the absence of protein co-factors. Current models suggest that directionality is controlled at two steps in the recombination pathway: the juxtaposition of loxP sites and the single-strand-transfer reactions within the synaptic complex. Here, we show that in Escherichia coli strain 294-Cre, directionality for recombination is altered when the expression of Cre is increased. This leads to deletion instead of inversion on substrates carrying two loxP sites as inverted repeats. The nucleotide sequence composition of loxP sites remaining in aberrant products indicates that site alignment and/or DNA strand transfer in the in vivo Cre-loxP recombination pathway are not always tightly controlled.  相似文献   

14.
The heterodimeric HU protein associated with the Escherichia coli nucleoid shares some properties with histones and HMG proteins. HU binds DNA junctions and DNA containing a nick much more avidly than double-stranded (ds-) DNA. Cells lacking HU are extremely sensitive to gamma irradiation and we wondered how HU could play a role in maintaining the integrity of the bacterial chromosome. We show that HU binds with high affinity to DNA repair and recombination intermediates, including DNA invasions, DNA overhangs and DNA forks. The DNA structural motif that HU specifically recognizes in all these structures consists of a ds-DNA module joined to a second module containing either ds- or single-stranded (ss-) DNA. The two modules rotate freely relative to one another. Binding specificity results from the simultaneous interaction of HU with these two modules: HU arms bind the ds-DNA module whereas the HU body contacts the 'variable' module containing either ds- or ss-DNA. Both structural motifs are recognized by HU at least 1000-fold more avidly than duplex DNA.  相似文献   

15.
Sin recombinase from Staphylococcus aureus acts selectively on directly repeated resH sites, assembling an intertwined synapse in which exactly three supercoils are trapped between the points of strand exchange. Resolution requires the two Sin binding sites in resH (site I, where strand exchange occurs, and site II) and a non-specific DNA-bending protein (e.g. Hbsu). We show that a single amino acid substitution in Sin (I100T) is sufficient to relax the normal requirements for site II and Hbsu. Using this hyperactive protein, and the variant recombination site resH(AT), we investigate the roles of site II and Hbsu in synapsis and strand exchange. We conclude that Sin bound at site II, and Hbsu, act together to control site I alignment and the topology of the synapse, and to stimulate strand exchange.  相似文献   

16.
Tn4430 is a distinctive transposon of the Tn3 family that encodes a tyrosine recombinase (TnpI) to resolve replicative transposition intermediates. The internal resolution site of Tn4430 (IRS, 116 bp) contains two inverted repeats (IR1 and IR2) at the crossover core site, and two additional TnpI binding motifs (DR1 and DR2) adjacent to the core. Deletion analysis demonstrated that DR1 and DR2 are not required for recombination in vivo and in vitro. Their function is to provide resolution selectivity to the reaction by stimulating recombination between directly oriented sites on a same DNA molecule. In the absence of DR1 and/or DR2, TnpI-mediated recombination of supercoiled DNA substrates gives a mixture of topologically variable products, while deletion between two wild-type IRSs exclusively produces two-noded catenanes. This demonstrates that TnpI binding to the accessory motifs DR1 and DR2 contributes to the formation of a specific synaptic complex in which catalytically inert recombinase subunits act as architectural elements to control recombination sites pairing and strand exchange. A model for the organization of TnpI/IRS recombination complex is presented.  相似文献   

17.
Beta recombinase, a DNA resolvase-invertase, catalyzes in the presence of a chromatin-associated protein such as Hbsu, DNA resolution or DNA inversion on supercoiled substrates containing two directly or inversely oriented target (six) sites. Single crystals of the beta recombinase from plasmid pSM19035 were obtained using the vapor diffusion technique with ammonium phosphate as the precipitating agent. The crystals diffracted X-rays to a maximum resolution of 2.5A. Due to proteolytic degradation during the crystallization experiment, the crystals contain only the N-terminal catalytic domain of beta recombinase corresponding to about 60% of the molecular mass of the initially assayed native protein. The proteolytic removal of the C-terminal DNA-binding domain demonstrated that protein modification can be essential to provide material suitable for X-ray analysis.  相似文献   

18.
Site-specific DNA inversion by the Hin recombinase requires the formation of a multicomponent nucleo-protein structure called an invertasome. In this structure, the two recombination sites bound by Hin are assembled together at the Fis-bound recombinational enhancer with the requisite looping of the intervening DNA segments. We have analyzed the role of the HU protein in invertasome assembly when the enhancer is located at variable positions close to one of the recombination sites. In the absence of HU in vitro and in hupA hupB mutant cells in vivo, invertasome assembly is very inefficient when there is < 104 bp of DNA between the enhancer and recombination site. Invertasome assembly in the presence of HU in vitro or in vivo displayed a periodicity beginning with 60 bp of intervening DNA that reflected its helical repeat. The average helical repeat for this DNA region was calculated by autocorrelation and Fourier transformation to be 11.2 bp per turn for supercoiled DNA both in the presence of HU in vitro and in hup+ cells in vivo. HU is the only protein in Escherichia coli that can promote invertasome formation with short DNA lengths between the enhancer and recombination sites. However, the presence of certain polyamines and a protein activity present in HeLa nuclear extracts can efficiently substitute for HU in invertasome assembly. These data support a model in which HU binds non-specifically to the DNA between the enhancer and recombination site to facilitate DNA looping.  相似文献   

19.
Central to understanding the process of V(D)J recombination is appreciation of the protein–DNA complex which assembles on the recombination signal sequences (RSS). In addition to RAG1 and RAG2, the protein HMG1 is known to stimulate the efficiency of the cleavage reaction. Using electrophoretic mobility shift analysis we show that HMG1 stimulates the in vitro assembly of a stable complex with the RAG proteins on each RSS. We use UV crosslinking studies of this complex with azido-phenacyl derivatized probes to map the contact sites between the RAG proteins, HMG1 derivatives and the RSS. We find that the RAG proteins make contacts at the nonamer, heptamer and adjacent coding region. The HMG1 protein by itself appears to localize at the 3′ side of the nonamer, but a cooperative complex with the RAG proteins is positioned at the 3′ side of the heptamer and adjacent spacer in the 12RSS. In the complex with RAG proteins, HMG1 is positioned primarily in the spacer of the 23RSS. We suggest that bends introduced into these DNA substrates at specific locations by the RAG proteins and HMG1 may help distinguish the 12RSS from the 23RSS and may therefore play an important role in the coordinated reaction.  相似文献   

20.
Sequencing of the 7 kb immC region from four P1-related phages identified a novel DNA recombinase that exhibits many Cre-like characteristics, including recombination in mammalian cells, but which has a distinctly different DNA specificity. DNA sequence comparison to the P1 immC region showed that all phages had related DNA terminase, C1 repressor and DNA recombinase genes. Although these genes from phages P7, ϕw39 and p15B were highly similar to those from P1, those of phage D6 showed significant divergence. Moreover, the D6 sequence showed evidence of DNA deletion and substitution in this region relative to the other phages. Characterization of the D6 site-specific DNA recombinase (Dre) showed that it was a tyrosine recombinase closely related to the P1 Cre recombinase, but that it had a distinct DNA specificity for a 32 bp DNA site (rox). Cre and Dre are heterospecific: Cre did not catalyze recombination at rox sites and Dre did not catalyze recombination at lox sites. Like Cre, Dre catalyzed both integrative and excisive recombination and required no other phage-encoded proteins for recombination. Dre-mediated recombination in mammalian cells showed that, like Cre, no host bacterial proteins are required for efficient Dre-mediated site-specific DNA recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号