首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 936 毫秒
1.
We report a case study of characterization of a non-enzymatically glycated IgG1 using reducing capillary electrophoresis sodium dodecyl sulfate (CE–SDS) and mass spectrometry (MS). Glycation was found to occur nonspecifically at multiple sites in both the light and heavy chains. The glycated light and heavy chains result in wider peaks eluting late in the reducing CE–SDS profile; in particular, the glycated light chain behaved as a shoulder peak detected by either ultraviolet (UV) or laser-induced fluorescence (LIF) signals. The glycated species can be enriched by boronate affinity chromatography. Analyzing the enriched samples by reversed phase high-performance liquid chromatography in line with time-of-flight MS (RP–HPLC–TOF/MS) revealed adducts of +162 and +324 Da to both the light and heavy chains, suggesting the presence of multiple glycation sites. Tryptic peptide mapping and tandem mass sequencing were used to identify two glycation sites on each of the light and heavy chains.  相似文献   

2.
The glycation of beta cell proteins is known to occur under hyperglycemic states. The site(s) of glycation in human proinsulin was investigated following exposure to a hyperglycemic environment under reducing conditions in vitro. Proinsulin and glycated proinsulin were separated by reversed-phase high-performance liquid chromatography (RP-HPLC) and identified using LCQ ion-trap electrospray ionization mass spectrometry. This revealed a major peak (>70% total) of monoglycated proinsulin (M(r) 9552.2 Da), a second peak (approximately 27%) of nonglycated proinsulin (M(r) 9389.8 Da), and a third minor peptide peak (approximately 3%) corresponding to diglycated proinsulin (M(r) 9717.9 Da). Following reduction of disulphide bridges with dithiothreitol, intact peptides were incubated with endoproteinase Glu-C to release nine daughter fragments for LC-MS analysis. This strategy revealed an N-terminal fragment of monoglycated proinsulin Phe(1)-Glu(13), which contained a single glucitol adduct (M(r) 1642.0 Da). A similar treatment of small amounts of purified diglycated proinsulin revealed a fragment with Phe(1)-Glu(13) linked by a disulphide bridge to Gln(70)-Glu(82) containing two glucitol adducts (M(r) 3292.7 Da). In summary, these studies indicate that the major site of glycation in proinsulin, like insulin, is the amino terminal Phe(1) residue. However, small amounts of diglycated proinsulin occur naturally, involving an additional site of glycation located between Gln(70) and Glu(82).  相似文献   

3.
Protein glycation in biological systems occurs predominantly on lysine, arginine and N-terminal residues of proteins. Major quantitative glycation adducts are found at mean extents of modification of 1–5 mol percent of proteins. These are glucose-derived fructosamine on lysine and N-terminal residues of proteins, methylglyoxal-derived hydroimidazolone on arginine residues and Nε-carboxymethyl-lysine residues mainly formed by the oxidative degradation of fructosamine. Total glycation adducts of different types are quantified by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring mode. Metabolism of glycated proteins is followed by LC-MS/MS of glycation free adducts as minor components of the amino acid metabolome. Glycated proteins and sites of modification within them – amino acid residues modified by the glycating agent moiety - are identified and quantified by label-free and stable isotope labelling with amino acids in cell culture (SILAC) high resolution mass spectrometry. Sites of glycation by glucose and methylglyoxal in selected proteins are listed. Key issues in applying proteomics techniques to analysis of glycated proteins are: (i) avoiding compromise of analysis by formation, loss and relocation of glycation adducts in pre-analytic processing; (ii) specificity of immunoaffinity enrichment procedures, (iii) maximizing protein sequence coverage in mass spectrometric analysis for detection of glycation sites, and (iv) development of bioinformatics tools for prediction of protein glycation sites. Protein glycation studies have important applications in biology, ageing and translational medicine – particularly on studies of obesity, diabetes, cardiovascular disease, renal failure, neurological disorders and cancer. Mass spectrometric analysis of glycated proteins has yet to find widespread use clinically. Future use in health screening, disease diagnosis and therapeutic monitoring, and drug and functional food development is expected. A protocol for high resolution mass spectrometry proteomics of glycated proteins is given.  相似文献   

4.
The present study was designed to investigate the effects of aging on preferential sites of glucose adduct formation on type I collagen chains. Two CNBr peptides, one from each type of chain in the type I tropocollagen molecule, were investigated in detail: alpha 1(I)CB3 and alpha 2CB3-5. Together these peptides comprise approximately 25% of the total tropocollagen molecule. The CNBr peptides were purified from rat tail tendon, obtained from animals aged 6, 18, and 36 months, by ion exchange chromatography, gel filtration, and high-performance liquid chromatography (HPLC). Sugar adducts were radiolabeled by reduction with NaB3H4. Glycated tryptic peptides were prepared from tryptic digests of alpha 2CB3-5 and alpha 1(I)CB3 by boronate affinity chromatography and HPLC. Peptides were identified by sequencing and by compositional analysis. Preferential sites of glycation were observed in both CB3 and alpha 2CB3-5. Of the 5 lysine residues in CB3, Lys-434 was the favored glycation site. Of the 18 lysine residues and 1 hydroxylysine residue in alpha 2CB3-5, 3 residues (Lys-453, Lys-479, and Lys-924) contained more than 80% of the glucose adducts on the peptide. Preferential glycation sites were highly conserved with aging. In collagen that had been glycated in vitro, the relative distribution of glucose adducts in old animals differed from that of young animals. In vitro experiments suggest that primary structure is the major determinant of preferential glycation sites but that higher order structure may influence the relative distribution of glucose adducts among these preferred sites.  相似文献   

5.
Protein glycation is a nonenzymatic modification that involves pathological functions in neurological diseases. Despite the high number of studies showing accumulation of advanced end glycation products (AGEs) at clinical stage, there is a lack of knowledge about which proteins are modified, where those modifications occur, and to what extent. The goal of this study was to achieve a comprehensive characterization of proteins modified by early glycation in human cerebrospinal fluid (CSF). Approaches based on glucose diferential labeling and mass spectrometry have been applied to evaluate the glycated CSF proteome at two physiological conditions: native glucose level and in vitro high glucose content. For both purposes, detection of glycated proteins was carried out by HCD-MS2 and CID-MS3 modes after endoproteinase Glu-C digestion and boronate affinity chromatography. The abundance of glycation was assessed by protein labeling with (13)C(6)-glucose incubation. The analysis of native glycated CSF identified 111 glycation sites corresponding to 48 glycated proteins. Additionally, the in vitro high glucose level approach detected 265 glycation sites and 101 glycated proteins. The comparison of glycation levels under native and 15 mM glucose conditions showed relative concentration increases up to ten folds for some glycated proteins. This report revealed for the first time a number of key glycated CSF proteins known to be involved in neuroinflammation and neurodegenerative disorders. Altogether, the present study contains valuable and unique information, which should further help to clarify the pathological role of glycation in central nervous system pathologies. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   

6.
Glucose may oxidise under physiological conditions and lead to the production of protein reactive ketoaldehydes, hydrogen peroxide and highly reactive oxidants. Glucose is thus able to modify proteins by the attachment of its oxidation derived aldehydes, leading to the development of novel protein fluoro-phores, as well as fragment protein via free radical mechanisms.

The fragmentation of protein by glucose is inhibitable by metal chelators such as diethylenetriamine pentaacetic acid (DETAPAC) and free radical scavengers such as benzoic acid, and sorbitol. The enzymic antioxidant, catalase, also inhibits protein fragmentation.

Protein glycation and protein oxidation are inextricably linked. Indeed, using boronate affinity chromatography to separate glycated from non-glycated material, we demonstrate that proteins which arc glycated exhibit an enhanced tryptophan oxidation. Our observation that both glycation and oxidation occur simultaneously further supports the hypothesis that tissue damage associated with diabetes and ageing has an oxidative origin.  相似文献   

7.
《Free radical research》2013,47(1):115-123
Glucose may oxidise under physiological conditions and lead to the production of protein reactive ketoaldehydes, hydrogen peroxide and highly reactive oxidants. Glucose is thus able to modify proteins by the attachment of its oxidation derived aldehydes, leading to the development of novel protein fluoro-phores, as well as fragment protein via free radical mechanisms.

The fragmentation of protein by glucose is inhibitable by metal chelators such as diethylenetriamine pentaacetic acid (DETAPAC) and free radical scavengers such as benzoic acid, and sorbitol. The enzymic antioxidant, catalase, also inhibits protein fragmentation.

Protein glycation and protein oxidation are inextricably linked. Indeed, using boronate affinity chromatography to separate glycated from non-glycated material, we demonstrate that proteins which arc glycated exhibit an enhanced tryptophan oxidation. Our observation that both glycation and oxidation occur simultaneously further supports the hypothesis that tissue damage associated with diabetes and ageing has an oxidative origin.  相似文献   

8.
Purified osteocalcin from cow and calf bone was analyzed for nonenzymatic glycosylation (glycation) by sodium [3H]borohydride reduction. Calf bone was found to be approximately 5% glycated, while bone from mature cows was 10% glycated. These results were confirmed by a second method which utilizes periodate oxidation followed by formaldehyde fluorescence. Osteocalcin in human bone was also found to be glycated. The content of glycated osteocalcin from the bones of 47 nondiabetic individuals, aged 0.6-97, was dependent upon age. The extent of glycation was lowest in children, was constant through the adult years, and increased linearly in bone taken from individuals aged 60-97. Glycated osteocalcin was purified by boronate affinity chromatography and subjected to one-step Edman degradation. It was established that the site of glycation was the amino-terminal tyrosine. Increases in the amount of glycated osteocalcin in the bones of older individuals may play a role in the pathogenesis of senile osteoporosis and in the osteopenia which may accompany diabetes mellitus.  相似文献   

9.
Electrospray ionization mass spectrometry (ESIMS) was used for relative quantification of glycated Cu-Zn superoxide dismutase (SOD-1) in human erythrocytes. SOD-1 samples were prepared from erythrocytes by removing hemoglobin using hemoglobind gel followed by ethanol and chloroform extraction. The reproducibility in measurement of the relative percentage of glycated protein was good, and the standard deviation of each measurement was 4.0%. From the mass spectral analysis of a mixture of commercial SOD-1 and in vitro partially glycated SOD-1 in several ratios, it was found that free and glycated SOD-1 have the same ionization efficiencies. The percentage of glycation on SOD-1 was measured in 30 individuals, including patients with diabetes mellitus. The glycation levels ranged from 4.5% to below the detection limit. The SOD-1 sample extracted from erythrocytes was fractionated by Glyco-Gel B chromatography, and the separated fractions were analyzed by MS. The mass spectra of absorbed fraction showed significant amounts of non-specific binding of non-glycated proteins to Glyco-Gel B.  相似文献   

10.
Human haemoglobin (Hb) may appear in a number of glycated species. The glycation pattern of Hb using shielding boronate affinity chromatography (SBAC) has been studied in the present work. SBAC is a novel separation technique, which eliminates nonspecific boronate-protein interactions by introducing a so-called shielding reagent. Two samples from Bio-Rad (Lyphochek)--one from normal persons' blood with relatively low HbA(1c) level (HbL) and the other from diabetic patients' blood with an elevated HbA(1c) level (HbH)--were used for the investigation. Glycated Hb (GHb) was separated from nonglycated Hb species using Tris as the shielding reagent. Two eluted peaks, eluted peak 1 (E1) and eluted peak 2 (E2), were obtained using a linear gradient elution with Tris. Several bands were observed on isoelectric focusing gel, which showed the same migration positions as Hb adducts, such as HbA(0), which is major Hb component containing two alpha chains and two beta chains; HbA(1c), which is post-translational glycation on the N-terminus of the beta chains of HbA(0); Foetal Hb (HbF), consisting of two alpha chains and two gamma chains; and glutathione Hb (also called HbSSG), which is the result from thiol-disulphide interchain exchange during oxidation of the thiol groups of Hb. In both HbL and HbH samples, E2 exhibited slightly higher amounts of HbF than E1. Electrospray-ionisation mass spectrometry showed that: (1) HbL-E1 was glycated with single glucose on both alpha and beta chains while no observable glycated chains were present in HbL-E2; (2) both HbH-E1 and HbH-E2 were glycated with single glucoses on both alpha and beta chains, however, compared with HbH-E1, HbH-E2 showed a higher relative intensity of the glycated beta chain and lower relative intensity of the glycated alpha chain; and (3) the degree of glycation increased with increasing glycation level of the sample. The amount of HbA(1c) presented in the eluted peaks was further determined using enzymatic digestion of glycated Hb by endoproteinase Glu-C and the subsequent separation and analysis of the digested peptides by reversed-phase high-performance liquid chromatography and capillary electrophoresis. The values of HbA(1c)/HbA(0) of the eluted peaks, i.e. HbL-E1, HbL-E2, HbH-E1 and HbH-E2, were 0.27, 0.19, 0.50 and 0.43, respectively. In both HbL and HbH samples, E1 contained higher amounts of HbA(1c) than E2. This study demonstrates the structural heterogeneity of GHb as well as the possibility of using SBAC to detect glycated species of Hb.  相似文献   

11.
The nonenzymatic glycosylation (glycation) of Cu-Zn-superoxide dismutase led to gradual inactivation of the enzyme (Arai, K. Iizuka, S., Tada, Y., Oikawa, K., and Taniguchi, N. (1987) Biochim. Biophys. Acta 924, 292-296). The purified superoxide dismutase from human erythrocytes comprises both glycated and nonglycated forms. The nonglycated Cu-Zn-superoxide dismutase was isolated by boronate affinity chromatography. Incubation of the nonglycated superoxide dismutase with D-[6-3H]glucose in vitro resulted in the gradual accumulation of radioactivity in the enzyme protein, and Schiff base adducts were trapped by NaBH4. The sites of glycation of the superoxide dismutase were identified by amino acid analysis after reverse-phase high performance liquid chromatography of the trypsin-treated peptides. Lysine residues, i.e. Lys3, Lys9, Lys30, Lys36, Lys122, and Lys128, were found to be glycated. Three of the glycated sites lie in Lys-Gly, two in Lys-Ala, and one in Lys-Val. The inactivation of the superoxide dismutase on the glycation is due mainly to the glycation of Lys122 and Lys128, which are supposed to be located in an active site liganding loop. The remaining five sites, such as Lys-Glu, Lys-Asp, Lys-His, and Lys-Thr are relatively inactive as to the formation of either a Schiff base or an Amadori adduct.  相似文献   

12.
The secretory enzyme extracellular-superoxide dismutase (EC-SOD) has affinity for heparin and some other sulfated glycosaminoglycans and is in vivo bound to heparan sulfate proteoglycan. Nonenzymic glycation of EC-SOD, both in vivo and in vitro, is associated with a reduction in heparin affinity, whereas the enzymic activity is not affected. The glycation sites in EC-SOD are further studied in the present article. It is shown that modification of a few of the five lysyl residues of the subunits of the enzyme with trinitrobenzene sulfonic acid nearly abolishes the in vitro glycation susceptibility. From a chymotryptic digest of in vitro glycated EC-SOD, two peptides with affinity for boronate could be isolated. Amino acid sequence analysis showed that both encompassed the carboxyterminal end. epsilon-Glucitol lysine was identified in both peptides at positions 211 and 212. The primary glycation sites in EC-SOD are thus lysine-211 and lysine-212 in the putative heparin-binding domain in the carboxyterminal end.  相似文献   

13.
Protein glycation through Maillard reaction (MR) is a fundamental reaction both in foods and in the human body. The first step of the reaction is the formation of Amadori product (AP) that is converted into intermediate and advanced MR products during reaction development. Although the MR is not an enzymatic reaction, a certain degree of specificity in the glycation site has been observed. In the present study, we have monitored the glycation of different lysine-containing dipeptides to evaluate the influence on the NH(2) reactivity of the neighboring amino acid.Lysine dipeptides were reacted with glucose, galactose, lactose and maltose. The formation and identification of glycated compounds were monitored by mass spectrometry (MALDI-TOF and ESI-MS/MS) and by HPLC of their Fmoc derivatives. MS/MS analysis showed that the glucose APs formed on dipeptides have a characteristic fragmentation pattern: the fragment at [M - 84](+) due to the formation of pyrylium and furylium ion is mainly present in the monoglucosylated form, while the [M - 162](+) and the [M - 324](+) are more evident in the fragmentation pattern of the diglucosylated forms.The nature of the vicinal amino acids strongly affects lysine reactivity towards the different carbohydrates: the presence of hydrophobic residues such as Ile, Leu, Phe strongly increases lysine reactivity. Contrasting results were obtained with basic residues. The Lys-Arg dipeptide was among the most reactive while the Lys-Lys was not.  相似文献   

14.
Protein glycation is a non-enzymatic glycosylation that can occur to proteins in the human body, and it is implicated in the pathogenesis of multiple chronic diseases. Glycation can also occur to recombinant antibodies during cell culture, which generates structural heterogeneity in the product. In a previous study, we discovered unusually high levels of glycation (>50%) in a recombinant monoclonal antibody (rhuMAb) produced by CHO cells. Prior to that discovery, we had not encountered such high levels of glycation in other in-house therapeutic antibodies. Our goal here is to develop cell culture strategies to decrease rhuMAb glycation in a reliable, reproducible, and scalable manner. Because glycation is a post-translational chemical reaction between a reducing sugar and a protein amine group, we hypothesized that lowering the concentration of glucose--the only source of reducing sugar in our fed-batch cultures--would lower the extent of rhuMAb glycation. When we decreased the supply of glucose to bioreactors from bolus nutrient and glucose feeds, rhuMAb glycation decreased to below 20% at both 2-L and 400-L scales. When we maintained glucose concentrations at lower levels in bioreactors with continuous feeds, we could further decrease rhuMAb glycation levels to below 10%. These results show that we can control glycation of secreted proteins by controlling the glucose concentration in the cell culture. In addition, our data suggest that rhuMAb glycation occurring during the cell culture process may be approximated as a second-order chemical reaction that is first order with respect to both glucose and non-glycated rhuMAb. The basic principles of this glycation model should apply to other recombinant proteins secreted during cell culture.  相似文献   

15.
Post-translational, nonenzymatic glycation of monoclonal antibodies (mAbs) in the presence of reducing sugars (in bioprocesses) is a widely known phenomenon, which affects protein heterogeneity and potentially has an impact on quality, safety, and efficacy of the end product. Quantification of individual glycation levels is compulsory for each mAb therapeutically applied in humans. We therefore propose an analytical method for monitoring glycation levels of mAb products during the bioprocess. This is a useful tool for process-design considerations, especially concerning glucose-feed strategies and temperature as major driving factors of protein glycation. In this study, boronate affinity chromatography (BAC) was optimized for determination of the glycation level of mAbs in supernatants. In fact, the complex matrix found in supernatants is an underlying obstacle to use BAC, but with a simple clean-up step, we found that the elution profile could be significantly improved so that qualitative and quantitative determination could be reached. Complementary analytical methods confirmed the performance quality, including the correctness and specificity of the results. For quantitative determination of mAb glycation in supernatants, we established a calibration procedure for the retained mAb peak, identified as glycated antibody monomers. For this approach, an available fully characterized mAb standard, Humira®, was successfully applied, and continuous monitoring of mAbs across three repetitive fed-batch processes was finally performed. With this practical, novel approach, an insight was obtained into glycation levels during bioprocessing, in conjunction with glucose levels and product titer over time, facilitating efficient process development and batch-consistency monitoring.  相似文献   

16.
Human serum albumin is one of the most abundant plasma proteins that readily undergoes glycation, thus glycated albumin has been suggested as an additional marker for monitoring glycemic status. Hitherto, only Amadori-modified peptides of albumin were quantified. In this study, we report the construction of fragment ion library for Amadori-modified lysine (AML), N(ε)-(carboxymethyl)lysine (CML)-, and N(ε)-(carboxyethyl)lysine (CEL)-modified peptides of the corresponding synthetically modified albumin using high resolution accurate mass spectrometry (HR/AM). The glycated peptides were manually inspected and validated for their modification. Further, the fragment ion library was used for quantification of glycated peptides of albumin in the context of diabetes. Targeted Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH) analysis in pooled plasma samples of control, prediabetes, diabetes, and microalbuminuria, has led to identification and quantification of 13 glycated peptides comprised of four AML, seven CML, and two CEL modifications, representing nine lysine sites of albumin. Five lysine sites namely K549, K438, K490, K88, and K375, were observed to be highly sensitive for glycation modification as their respective m/z showed maximum fold change and had both AML and CML modifications. Thus, peptides involving these lysine sites could be potential novel markers to assess the degree of glycation in diabetes.Diabetes is a complex metabolic disorder characterized by prolonged hyperglycemia resulting from defects in insulin secretion, insulin action, or both, leading to abnormalities in carbohydrate, fat, and protein metabolism (1). According to the projection by the International Diabetes Foundation, around 592 million people will be affected by diabetes by the year 2040 (2). Diabetes and its associated complications are becoming global public health problems and posing a serious challenge in disease management. Many studies have implicated advanced glycation end products (AGEs)1 in the development of insulin resistance, as well as in pathogenesis of diabetic complications (3). The levels of AGEs increase substantially in diabetic plasma due to the hyperglycemic condition. Factors such as oxidative stress, overnutrition, and foods rich in glycating agents promote the formation of AGEs even in nondiabetic condition (4). Oral AGEs foster insulin resistance and diabetes by down-regulation of anti-AGE receptor-1(AGER1), sirtuin 1, and up-regulation of receptor for AGEs (RAGE) (5). AGEs affect glucose uptake, transport and promote insulin resistance in adipocytes (6). While in skeletal muscle cells AGEs inhibit insulin action, mediated through RAGE (7). The AGE-RAGE axis induces oxidative stress, activates proinflammatory pathways and has been considered as a principal pathway in the pathogenesis of diabetes and its complications (8). AGE interacts with RAGE in different cells and tissues, contributing to pathogenesis in diabetes (9). By and large, AGEs contribute to development of insulin resistance leading to diabetes, as well as in the pathogenesis of diabetic complications. Therefore, analysis of plasma AGEs can possibly provide information about the severity of diabetes.Human serum albumin (HSA), one of the most abundant plasma proteins, is highly glycated and contributes predominantly to the plasma AGEs. Apart from its role in pathogenesis, AGE-modified HSA (AGE-HSA) has been suggested as an alternative diagnostic marker to glycated hemoglobin (HbA1c) for monitoring glycemic status in diabetes (10). Although HbA1c is considered the “gold standard” marker, reflecting the glycemic status over the period of 8–10 weeks (1, 10), factors like anemia, blood loss, splenomegaly, and iron deficiency affect HbA1c levels (11). AGE-HSA reflects glycemic status over the preceding 3–4 weeks and has been recommended in gestational diabetes (12). In diabetes, the levels of AGE-HSA increase and were found to be positively correlated with hyperglycemia (13, 14). In addition, several recent studies have suggested that the levels of AGE-HSA are associated with prediabetic condition (15) and microalbuminuria (16). Therefore, quantification of AGE-HSA is of utmost clinical significance. Thus, understanding the site-specific modification and their dynamic transformation to heterogeneous AGEs is quite critical for mass spectrometric quantification.AGEs can be quantified by various approaches, including colorimetric assay, ketoamine oxidase assay, enzyme-linked boronate immunoassay, fluorescence spectroscopy, boronic acid affinity chromatography assay, and mass spectrometry (MS) (17). Among these approaches, MS offers precise characterization of protein glycation, including the amino acid involved in the modification. Most of the AGEs reported in vitro and in vivo were discovered by MS-based techniques (18). AML modification has been extensively studied by different MS approaches. The fragmentation pattern and diagnostic ions for AML rearrangement product has been well established (19, 20). Further specific neutral loss ions of 162 Da, 120 Da, and 84 Da and water loss of 36 Da arising from hexose moiety of glycated peptide were also considered as signature ions to validate the glycation of peptides in HSA (21, 22). Similar characteristic patterns of water loss (18, 36, and 54 Da) ions and immonium ions derived from lysine arising from AML-modified peptide were also used to identify glycated peptides (23, 24). Diagnostic ions serve as the most reliable way of identifying glycated peptide by tandem mass spectrometry. Thus, having a good MS/MS fragment ion is key for precise characterization of glycation. However, the ratio of in vivo AGE-modified to unmodified protein is significantly low, which limits better MS/MS. Therefore, to achieve efficient identification, enrichment of glycated peptides using boronate affinity chromatography (BAC) was adopted prior to MS analysis (25). Further, by using a combination of immunodepletion, enrichment and fractionation strategies, a total of 7,749 unique glycated peptides corresponding to 1,095 native human plasma proteins, 1,592 in vitro glycated human plasma proteins, and 1,664 erythrocyte proteins were identified (26). In these lines, we have previously reported a database search approach for the identification of glycated peptide in a crude or nonenriched sample by untargeted MS/MS or data-independent workflow (27). Glycation is chronic process; a given protein can undergo dynamic heterogeneous transformations as these proteins have varying biological lifespans, influencing the function of a protein. Thus, to assess the degree of glycation at a given pathophysiological condition, precise identification of glycation becomes critical. In this regard, a stable-isotope-dilution tandem mass spectrometry method was employed for simultaneous analysis of CML and CEL in hydrolysates of plasma proteins (28), and 13C6-glucose was utilized to quantify glycated proteins in the plasma and erythrocytes (29, 30). In a recent study, the glycation-sensitive peptides of HSA that could serve as markers for early diagnosis of type 2 diabetes were quantified by using an MS-based 18O-labeling technique (31). However, most of the previous studies have focused on AML modification, rather than other AGE modification. In fact, CML and CEL are the predominant AGEs, constituting up to 80% of total AGEs (32, 33). Diagnostic reporter ions for CML and CEL were reported recently by Prof. Ralf Hoffmann''s group (34). Here, for the first time, we report comprehensive development of an MS/MS fragment ion library for AML, CML, and CEL modifications of albumin. Further, fragment ion library was used as reference for quantification of AML-, CML-, and CEL-modified peptides of albumin in clinical plasma of healthy, prediabetic, diabetic, and microalbuminuria. Targeted SWATH analysis has led to quantification of 13 glycated peptides representing nine lysine sites. These peptides could serve as novel markers in diabetes.  相似文献   

17.
Amadori peptides were enriched using boronate affinity tips and measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS). As demonstrated by electrochemical measurements, the tips show the highest binding efficiency for glucose at pH 8.2 employing ammonium chloride/ammonia buffer with ionic strength of 150 mM, exceeding taurine buffer at the same concentration. The bound constituents were released by sorbitol and formic acid. It was also demonstrated that elution with sorbitol at 1.2 M is superior to acidic media. Comparison of results was based on the numbers of detected peptides and their glycated sites. Using sorbitol for elution requires desalting prior to analysis. Therefore, three different sorbents were tested: fullerene-derivatized silica, ZipTip (C18), and C18 silica. Fullerene-derivatized silica and ZipTip showed the same performance regarding the numbers of glycated peptides, and sites were better than C18 silica. The elaborated off-line method was compared with liquid chromatography-tandem mass spectrometry (LC-MS/MS) measurements, by which considerable less modified peptides were detected. Affinity tips used under optimized conditions were tested for the analysis of human serum albumin (HSA) from sera of healthy and diabetic individuals. A peptide with a mass of 1783.9 Da could be detected only in samples of diabetic patients and, therefore, could be a very interesting biomarker candidate.  相似文献   

18.
Glycation or the Maillard reaction in proteins forms advanced glycation end products (AGEs) that contribute to age- and diabetes-associated changes in tissues. Dideoxyosones, which are formed by the long-range carbonyl shift of the Amadori product, are newly discovered intermediates in the process of AGE formation in proteins. They react with o-phenylenediamine (OPD) to produce quinoxalines. We developed a monoclonal antibody against 2-methylquinoxaline-6-carboxylate coupled to keyhole limpet hemocyanin. The antibody reacted strongly with ribose and fructose (+OPD)-modified RNase A and weakly with glucose and ascorbate (+OPD)-modified RNase A. Reaction with substituted quinoxalines indicated that this antibody favored the 2-methyl group on the quinoxaline ring. We used high performance liquid chromatography to isolate and purify three antibody-reactive products from a reaction mixture of N alpha-hippuryl-L-lysine+ribose+OPD. The two most reactive products were identified as diastereoisomers of N1-benzoylglycyl-N6-(2-hydroxy-3-quinoxalin-2-ylpropyl)lysine and the other less reactive product as N1-benzoylglycyl-N6-[2-hydroxy-2-(3-methylquinoxalin-2-yl)ethyl]lysine. Our study confirms that dideoxyosone intermediates form during glycation and offers a new tool for the study of this important pathway in diabetes and aging.  相似文献   

19.
Modifications like asparagine deamidation, aspartate isomerization, methionine oxidation, and lysine glycation are typical degradations for recombinant antibodies. For the identification and functional evaluation of antibody critical quality attributes (CQAs) derived from chemical modifications in the complementary-determining regions (CDRs) and the conserved regions, an approach employing specific stress conditions, elevated temperatures, pH, oxidizing agents, and forced glycation with glucose incubation, was applied. The application of the specific stress conditions combined with ion exchange chromatography, proteolytic peptide mapping, quantitative liquid chromatography mass spectrometry, and functional evaluation by surface plasmon resonance analysis was adequate to identify and functionally assess chemical modification sites in the CDRs of a recombinant IgG1. LC-Met-4, LC-Asn-30/31, LC-Asn-92, HC-Met-100c, and HC Lys-33 were identified as potential CQAs. However, none of the assessed degradation products led to a complete loss of functionality if only one light or heavy chain of the native antibody was affected.  相似文献   

20.
Mass spectrometry has been coupled with flash liquid chromatography to yield new capabilities for isolating nonchromophoric material from complicated biological mixtures. A flash liquid chromatography/tandem mass spectrometry (LC/MS/MS) method enabled fraction collection of milk oligosaccharides from biological mixtures based on composition and structure. The method is compatible with traditional gas pressure-driven flow flash chromatography widely employed in organic chemistry laboratories. The online mass detector enabled real-time optimization of chromatographic parameters to favor separation of oligosaccharides that would otherwise be indistinguishable from coeluting components with a nonspecific detector. Unlike previously described preparative LC/MS techniques, we have employed a dynamic flow connection that permits any flow rate from the flash system to be delivered from 1 to 200 ml/min without affecting the ionization conditions of the mass spectrometer. A new way of packing large amounts of graphitized carbon allowed the enrichment and separation of milligram quantities of structurally heterogeneous mixtures of human milk oligosaccharides (HMOs) and bovine milk oligosaccharides (BMOs). Abundant saccharide components in milk, such as lactose and lacto-N-tetraose, were separated from the rarer and less abundant oligosaccharides that have greater structural diversity and biological functionality. Neutral and acidic HMOs and BMOs were largely separated and enriched with a dual binary solvent system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号