首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular changes associated with cellular senescence in human diploid fibroblasts (HDF), IMR-90, were analyzed by two-dimensional differential proteome analysis. A high percentage of replicative senescent cells were positive for senescence-associated beta-galactosidase activity, and displayed elevated levels of p21 and p53 proteins. Comparison of early population doubling level (PDL) versus replicative senescent cells among the 1000 spots resolved on gels revealed that the signal intensities of six spots were increased fivefold, whereas those of four spots were decreased. Proteome analysis data demonstrated that connective tissue growth factor (CTGF) is an age-associated protein. Up-regulation of CTGF expression in senescent cells was further confirmed by Western blotting and RT-PCR. We postulate that CTGF expression is controlled, in part, by transforming growth factor-beta (TGF-beta), in view of the high levels of TGF-beta isoforms as well as type I and II receptors detected only in late PDL of HDF cells. To verify this hypothesis, we stimulated early PDL cells with TGF-beta1 as well as stress inducing agents such as hydrogen peroxide. As expected, CTGF expression and Smad protein phosphorylation were dramatically increased up to observed levels in normal replicative senescent cells. In vivo experiments disclosed that CTGF, pSmad, and p53 were constitutively expressed at basal levels in up to 18-month-old rat liver, and expression was significantly up-regulated in 24-month-old rat tissue. However, expression patterns were not altered at all periods examined in livers of caloric-restricted rats. In view of both in vitro and in vivo data, we propose that the TGF-beta/Smad pathway functions in the induction of CTGF, a novel biomarker protein of cellular senescence in human fibroblasts.  相似文献   

2.
To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell,recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression.Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results revealed that, compared with control cells, the WI-38 cells in which p19ARFgene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10-12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells.These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.  相似文献   

3.
With multiple divisions in culture, normal diploid cells suffer a loss of growth potential that leads to replicative senescence and a finite replicative capacity. Using quantitative RT-PCR, we have monitored mRNA expression levels of c-fos, c-jun, JunB, c-myc, p53, H-ras, and histone H4 during the replicative senescence of human fibroblasts. The earliest and the largest changes in gene expression occurred in c-fos and junB at mid-senescence prior to the first slowing in cell growth rates. The basal level of c-fos mRNA decreased to one-ninth that of the early-passage levels, while junB declined to one-third and c-jun expression remained constant. The decline in the basal c-fos mRNA level in mid-senescence should lead to an increase in Jun/Jun AP-1 homodimers at the expense of Fos/Jun heterodimers and may trigger a cascade of further changes in c-myc, p53, and H-ras expression in late-passage senescent fibroblasts.  相似文献   

4.
5.
Zhao W  Lin ZX  Zhang ZQ 《Cell research》2004,14(1):60-66
To examine the role of gap junctions in cell senescence, the changes of gap junctions in cisplatin-induced premature senescence of primary cultured fibroblasts were studied and compared with the replicative senescent human fibroblasts.Dye transfer assay for gap junction function and immunofluorescent staining for connexin 43 protein distribution were done respectively. Furthermore, cytofluorimetry and DAPI fluorescence staining were performed for cell cycle and apoptosis analysis, p53 gene expression level was detected with indirect immunofluorescence. We found that cisplatin(10mM) treatment could block cell growth cycle at G1 and induced premature senescence. The premature senescence changes included high frequency of apoptosis, elevation of p53 expression, loss of membranous gap junctions and reduction of dye-transfer capacity. These changes were comparable to the changes of replicative senescence of human fibroblasts. It was also concluded that cisplatin could induce premature senescence concomitant with inhibition of gap junctions in the fibroblasts. Loss of functional gap junctions from the cell membrane may account for the reduced intercellular communication in the premature senescent fibroblasts. The cell system we used may provide a model useful for the study of the gap junction thus promoting agents against premature senescence.  相似文献   

6.
7.
Maintenance of methylation patterns in the mammalian genome by DNA (cytosine-5) methyltransferases (DNAMeTase) is required for normal cell and tissue function. Inhibition of DNAMeTase in cultured cells induces the expression of p21, a cyclin-dependent kinase (Cdk) inhibitor critical for cells to enter replicative senescence. We investigated the effects of DNAMeTase inhibition in normal human fibroblasts and found that it induces an irreversible growth arrest. Cells arrested by DNAMeTase inhibition became enlarged and had a flat morphology, exhibited an increased expression of collagenase and p21, and the DNA synthesis block could be overcome by the introduction of the SV40 large T antigen, all characteristics of senescent cells. In contrast, normal human fibroblasts lacking a functional p21 gene fail to undergo cell cycle arrest following DNAMeTase inhibition, indicating that p21 is an essential component of this arrest. Furthermore, DNAMeTase activity was reduced as cells approached the end of their proliferative potential. These data suggest that DNAMeTase could be an integral part of the mechanisms by which cells count the number of cell divisions completed and initiate a signaling cascade that ultimately results in the senescent phenotype.  相似文献   

8.
The replicative life span of human fibroblasts is heterogeneous, with a fraction of cells senescing at every population doubling. To find out whether this heterogeneity is due to premature senescence, i.e. driven by a nontelomeric mechanism, fibroblasts with a senescent phenotype were isolated from growing cultures and clones by flow cytometry. These senescent cells had shorter telomeres than their cycling counterparts at all population doubling levels and both in mass cultures and in individual subclones, indicating heterogeneity in the rate of telomere shortening. Ectopic expression of telomerase stabilized telomere length in the majority of cells and rescued them from early senescence, suggesting a causal role of telomere shortening. Under standard cell culture conditions, there was a minor fraction of cells that showed a senescent phenotype and short telomeres despite active telomerase. This fraction increased under chronic mild oxidative stress, which is known to accelerate telomere shortening. It is possible that even high telomerase activity cannot fully compensate for telomere shortening in all cells. The data show that heterogeneity of the human fibroblast replicative life span can be caused by significant stochastic cell-to-cell variation in telomere shortening.  相似文献   

9.
Human diploid fibroblasts have the capacity to complete a finite number of cell divisions before entering a state of replicative senescence characterized by growth arrest, changes in morphology, and altered gene expression. Herein, we report that interaction with extracellular matrix (ECM) from young cells is sufficient to restore aged, senescent cells to an apparently youthful state. The identity of the restored cells as having been derived from senescent cells has been confirmed by a variety of methods, including time lapse live cell imaging and DNA finger print analysis. In addition to cell morphology, phenotypic restoration was assessed by resumption of proliferative potential, growth factor responsiveness, reduction of intracellular reactive oxygen species levels, recovery of mitochondrial membrane potential, and increased telomere length. Mechanistically, we find that both Ku and SIRT1 are induced during restoration and are required for senescent cells to return to a youthful phenotype. These observations demonstrate that human cellular senescence is profoundly influenced by cues from the ECM, and that senescent cell plasticity is much greater than that was previously believed to be the case.  相似文献   

10.
11.
Numerous studies have shown that supplementation of the growth medium of human fibroblasts with dexamethasone at physiologic concentrations extends replicative lifespan up to 30%. While this extension of lifespan has been used to probe various aspects of the senescent phenotype, no mechanism for the increased lifespan of human fibroblasts grown in the presence of dexamethasone has ever been identified. In the present study we present evidence that the extended lifespan of human lung fibroblasts (WI-38 cells) that occurs when these cells are maintained in culture medium supplemented with dexamethasone is accompanied by a suppression of p21(Waf1/Cip1/Sdi1) levels, which normally increase as these cells enter senescence, while p16(INK4a) levels are unaffected. These results suggest that the delay of senescence in cultures grown in the presence of dexamethasone is due to a suppression of the senescence related increase in p21(Waf1/Cip1/Sdi1). These results are consistent with models of replicative senescence in which p53 and p21(Waf1/Cip1/Sdi1) play a role in the establishment of the senescent arrest.  相似文献   

12.
To investigate the effect of cell cycle inhibitor p19ARF on replicative senescence of human diploid cell, recombinant p19ARF eukaryotic expression vector was constructed and p19ARF gene was transfected into human diploid fibroblasts (WI-38 cells) by liposome-mediated transfection for overexpression. Then, the effects of p19ARF on replicative senescence of WI-38 cells were observed. The results re- vealed that, compared with control cells, the WI-38 cells in which p19ARF gene was introduced showed significant up-regulation of p53 and p21 expression level, decrease of cell generation by 10 12 generations, decline of cell growth rate with cell cycle being arrested at G1 phase, increase of positive rate of senescent marker SA-β-gal staining, and decrease of mitochondrial membrane potential. The morphology of the transfected fibroblasts presented the characteristics changes similar to senescent cells. These results indicated that high expression of p19ARF may promote the senescent process of human diploid cells.  相似文献   

13.
Chen JH  Ozanne SE  Hales CN 《FEBS letters》2005,579(28):6388-6394
Replicatively and oxidatively senescent human fibroblasts demonstrate an impaired response to mitogens. To investigate whether this is due to downregulation of growth factor receptors we examined their expression in these two types of senescence. mRNA and protein levels of the insulin receptor and platelet-derived growth factor (PDGF) alpha-receptor decreased in replicatively senescent cells. The PDGF beta-receptor and insulin-like growth factor 1 receptor at the protein level also decreased but remained readily detectable. However, these major growth factor receptors remained unchanged in oxidatively premature senescent cells. This suggests that mechanisms underlying diminished responsiveness to mitogens might be different in replicative senescence and oxidatively premature senescence.  相似文献   

14.
15.
The lifespan of human fibroblasts and other primary cell strains can be extended by expression of the telomerase catalytic subunit (hTERT). Since replicative senescence is accompanied by substantial alterations in gene expression, we evaluated characteristics of in vitro-aged dermal fibroblast populations before and after immortalization with telomerase. The biological behavior of these populations was assessed by incorporation into reconstituted human skin. Reminiscent of skin in the elderly, we observed increased fragility and subepidermal blistering with increased passage number of dermal fibroblasts, but the expression of telomerase in late passage populations restored the normal nonblistering phenotype. DNA microarray analysis showed that senescent fibroblasts express reduced levels of collagen I and III, as well as increased levels of a series of markers associated with the destruction of dermal matrix and inflammatory processes, and that the expression of telomerase results in mRNA expression patterns that are substantially similar to early passage cells. Thus, telomerase activity not only confers replicative immortality to skin fibroblasts, but can also prevent or reverse the loss of biological function seen in senescent cell populations.  相似文献   

16.
Microarray analysis of replicative senescence.   总被引:33,自引:0,他引:33  
BACKGROUND: Limited replicative capacity is a defining characteristic of most normal human cells and culminates in senescence, an arrested state in which cells remain viable but display an altered pattern of gene and protein expression. To survey widely the alterations in gene expression, we have developed a DNA microarray analysis system that contains genes previously reported to be involved in aging, as well as those involved in many of the major biochemical signaling pathways. RESULTS: Senescence-associated gene expression was assessed in three cell types: dermal fibroblasts, retinal pigment epithelial cells, and vascular endothelial cells. Fibroblasts demonstrated a strong inflammatory-type response, but shared limited overlap in senescent gene expression patterns with the other two cell types. The characteristics of the senescence response were highly cell-type specific. A comparison of early- and late-passage cells stimulated with serum showed specific deficits in the early and mid G1 response of senescent cells. Several genes that are constitutively overexpressed in senescent fibroblasts are regulated during the cell cycle in early-passage cells, suggesting that senescent cells are locked in an activated state that mimics the early remodeling phase of wound repair. CONCLUSIONS: Replicative senescence triggers mRNA expression patterns that vary widely and cell lineage strongly influences these patterns. In fibroblasts, the senescent state mimics inflammatory wound repair processes and, as such, senescent cells may contribute to chronic wound pathologies.  相似文献   

17.
Cellular senescence limits the replicative capacity of normal cells and acts as an intrinsic barrier that protects against the development of cancer. Telomere shortening–induced replicative senescence is dependent on the ATM‐p53‐p21 pathway but additional genes likely contribute to senescence. Here, we show that the p53‐responsive gene BTG2 plays an essential role in replicative senescence. Similar to p53 and p21 depletion, BTG2 depletion in human fibroblasts leads to an extension of cellular lifespan, and ectopic BTG2 induces senescence independently of p53. The anti‐proliferative function of BTG2 during senescence involves its stabilization in response to telomere dysfunction followed by serum‐dependent binding and relocalization of the cell cycle regulator prolyl isomerase Pin1. Pin1 inhibition leads to senescence in late‐passage cells, and ectopic Pin1 expression rescues cells from BTG2‐induced senescence. The neutralization of Pin1 by BTG2 provides a critical mechanism to maintain senescent arrest in the presence of mitogenic signals in normal primary fibroblasts.  相似文献   

18.
19.
《Epigenetics》2013,8(5):281-286
Demethylation of 5-methylcytosine in genomic DNA is believed to be one of the mechanisms underlying replicative life-span of mammalian cells. Both proliferation associated SNF2-like gene (PASG, also termed Lsh) and DNA methyltransferase 3B (Dnmt3b) knockout mice result in embryonic genomic hypomethylation and a replicative senescent phenotype. However, it is unclear whether gradual demethylation of DNA during somatic cell division is directly involved in senescence. In this study, we retrovirally transduced TIG-7 human fibroblasts with a shRNA against PASG and compared the rate of change in DNA methylation as well as the replicative life-span to control cells under low (3%) and ambient (20%) oxygen. Expression of PASG protein was decreased by approximately 80% compared to control cells following transduction of PASG shRNA gene. The rate of cell growth was the same in both control and PASG-suppressed cells. The rate of demethylation of DNA was significantly increased in PASG-suppressed cells as compared control cells. However, decreased PASG expression did not shorten the replicative life-span of TIG-7 cells. Culture under low oxygen extended the life-span of TIG-7 cells but did not alter the rate of DNA demethylation. While knockout of PASG during development results in genomic hypomethylation and premature senescence, our results show that while down-regulation of PASG expression in a somatic cell also leads to DNA hypomethylation, there is no associated senescent phenotype. These results suggest differences in cellular consequences of hypomethylation mediated by PASG during development compared to that in somatic cells.  相似文献   

20.
H1 histone subspecies have been reported to vary during tissue differentiation, during aging of mammalian tissues, and as a function of DNA replicative activity. Since cultured human fibroblasts have a limited replicative life span which features arrest in the G1 phase of the cell cycle, we sought to distinguish whether any changes in the proportions of the principal H1 histone subspecies (H1A, H1B, and H1o) in late-passage fibroblasts were specific for senescent loss of replicative potential, or rather ensued as a result of prolonged inhibition of cell division. We observed an identical shift in the proportions of H1 histone subspecies during prolonged density-dependent inhibition of growth in both early-passage and late-passage cells. Since under these conditions there were no passage-specific changes, replicative senescence of human fibroblasts does not appear to involve a defect in the control of H1 histone proportions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号