首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal-containing organelles in cells of virus infected plants lying at chloroplasts and mitochondria are identical with single membrane-bound microbodies containing crystals of catalase described in healthy plants. Massive complex inclusions caused by turnip mosaic virus very frequently contain the same microbodies with crystal inclusions; that phenomenon may be related to some pathophysiological changes of virus infected plants. Comparable proteinaceous crystals, but not lying within microbodies limited by a membrane, may also be found in cytoplasm of infected cells. These crystals are sometimes surrounded by a substance resembling the microbody matrix. Disintegrated cytoplasm of virus infected cells may also contain the same crystals lying free in “empty spaces”. Cytopathological effects responsible for this phenomenon and possible artifacts as well are discussed.  相似文献   

2.
Nicotiana benthamiana can be doubly infected with either potato virus Y or tobacco etch virus and sorghum chlorotic spot virus (SCSV). Immunogold labeling showed that cylindrical inclusions of either potyvirus bind virions of the unrelated rod-shaped furovirus SCSV. Not all cells in doubly infected N. benthamiana plants contained both viruses. In cells infected by the potyviruses but not by SCSV, cylindrical inclusions did not label with the antiserum to SCSV. Numbers of cells infected with SCSV did not increase in doubly infected plants compared to those in plants infected with SCSV alone. Systemic infection of N. benthamiana by either potyvirus was not prevented by SCSV infections. This provides further evidence that unrelated rod-shaped viruses can bind to potyvirus cylindrical inclusion bodies, and that this phenomenon is not limited to graminaceous hosts.  相似文献   

3.
芝麻花叶病的病毒病原鉴定   总被引:1,自引:0,他引:1  
从患芝麻花叶病的病叶中提纯了一种线条状病毒颗粒,长700~800nm,宽13nm。经汁液摩擦接种可感染心叶烟、大豆,甜菜等9种植物,不感染西瓜,苋色藜、豇豆等。主要传毒介体是发生在芝麻田的桃蚜。病土、病种均不传病。该病毒与西瓜花叶病毒、芜菁花叶病毒及马铃薯Y病毒的抗血清无反应。超薄切片中可见到风轮形和纸卷形的圆柱状内含体以及结晶状内含体。结晶状内含体分布在细胞质和叶绿体中,其它内含体均见于细胞质中。同时,细胞质中还可见到大量聚集的线状病毒颗粒。初步认为此病毒可能是马铃薯Y病毒群中的一个新成员,暂称为芝麻花叶病毒。国内外均未见报道。  相似文献   

4.
The relationships of some viruses causing necrotic diseases of the potato   总被引:1,自引:0,他引:1  
Potato virus B , and some other viruses with reactions in potato varieties different from any previously described, are strains of virus X . All produce intracellular inclusions which vary with different hosts and virus strains. Except with virus B, the inclusions are larger and more frequent in potato than in tobacco or tomato. All give systemic infection when inoculated to tobacco, tomato and potato varieties in which they are carried or cause mosaic symptoms; some give systemic infection when inoculated to varieties in which they cause top-necrosis, whereas others give only local lesions.
Potato virus C is a strain of virus Y: in tobacco and a few potato varieties both produce similar symptoms, but in those varieties in which Y causes leaf-drop streak, C causes top-necrosis. C causes systemic infection when inoculated to tobacco and to potato varieties in which it causes mosaic symptoms, but not when inoculated to potato varieties in which it causes top-necrosis. Virus C was not transmitted by M . persicae. Viruses C and Y produce a few small intracellular inclusions in potato and tobacco.
Virus A is not related to Y or X : no inclusions were found in plants infected with A alone.  相似文献   

5.
The ultrastructural aheration of two host plants infected with tomato mosaic virus (ToMV) were studies with transmission electron microscopy. A large number of virus particles were found being accumulated in different cells such as epidermis, parenchyma cells and vascular bundle cells of Lycopersicon esculentum Mill. grown at 25℃ Crystalline inclusions and paracrystal inclusions composed of ToMV particles were observed in the cytoplasm or vacuoles. Some muhivesicular bodies and myeloid bodies protming into the vacuole and vires-specific vesicles associated with the tonoplast were also observed. The ultrastructuml alteration of Nicotiana tabacum L. tv. Xanthinn was similar to that in tomato infected by ToMV grown at 25 cE. In addition to the aggregate inclusions described above, some cytoplasmic angularly-layered aggregates and abnormal chloroplasts with small peripheral vesicles were observed in the parenchyma cells. The densely stained amorphous material was seen in the cytoplasm of N. tabacum L. cv. Xanthiun grown at 35℃. No X- body was observed in the cytoplasm of the ToMV infected tomato and tobacco grown at 25℃ or 35℃. The authors' results suggest a significant difference between the cytopathological effects of ToMV and tobacco mosaic virus (TMV). These characteristic difference may be useful in the virus diagnosis and identification virus infections in plants.  相似文献   

6.
Umbraviruses are different from most other viruses in that they do not encode a conventional capsid protein (CP); therefore, no recognizable virus particles are formed in infected plants. Their lack of a CP is compensated for by the ORF3 protein, which fulfils functions that are provided by the CPs of other viruses, such as protection and long-distance movement of viral RNA. When the Groundnut rosette virus (GRV) ORF3 protein was expressed from Tobacco mosaic virus (TMV) in place of the TMV CP [TMV(ORF3)], in infected cells it interacted with the TMV RNA to form filamentous ribonucleoprotein (RNP) particles that had elements of helical structure but were not as uniform as classical virions. These RNP particles were observed in amorphous inclusions in the cytoplasm, where they were embedded within an electron-dense matrix material. The inclusions were detected in all types of cells and were abundant in phloem-associated cells, in particular companion cells and immature sieve elements. RNP-containing complexes similar in appearance to the inclusions were isolated from plants infected with TMV(ORF3) or with GRV itself. In vitro, the ORF3 protein formed oligomers and bound RNA in a manner consistent with its role in the formation of RNP complexes. It is suggested that the cytoplasmic RNP complexes formed by the ORF3 protein serve to protect viral RNA and may be the form in which it moves through the phloem. Thus, the RNP particles detected here represent a novel structure which may be used by umbraviruses as an alternative to classical virions.  相似文献   

7.
Summary Amaranthus plants infected with a virus of rod-shaped particles showed under the light microscope intracytoplasmic amorphous and crystalline inclusions.The submicroscopic organization of mesophyll cells from infectedAmaranthus leaves by electron microscopy is described. Besides big crystalline inclusions, long dark inclusions correspondent to needle-like inclusions observed by light microscopy are definable in the cytoplasm. The amorphous inclusion bodies were formed by an overgrown protrusion of vacuolate cytoplasm containing virus particles, long very dark stained inclusions forming dense bands and rings, normal elements of the cytoplasm such as mitochondria, endoplasmic reticulum and ribosomes, and some spherosomes. Inclusions and virus particles were not found in chloroplasts, mitochondria or nuclei of infected cells.  相似文献   

8.
Diffrent types of cytoplasmic inclusions were observed in ultrathin sections of plants systemically infected with three different strains of ribgrass mosaic virus (RMV) (tobamovirus group). Tissue from uninoculated plants did not contain such inclusions. Most common were “rounded plates” consisting of layers of aligned virus particles 300 nm long. RMV also induced angled layer aggregates in Capsicum annuum plants. A novel type of inclusion for the tobamovirus group were the abundant spiral aggregates found in Digitalis purpurea, systemically infected with strain D of RMV. In these aggregates the virions become circularly arranged around a center. The orientation of the particles changes in such a way that virions being 300 nm apartare cut in the longitudinal and in the transverse direction respectively.  相似文献   

9.
The nonstructural Pns9 protein of Rice gall dwarf virus (RGDV) accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in host cells infected by viruses in the family Reoviridae. An RNA interference construct was designed to target the gene for Pns9 of RGDV, namely Trigger_G9. The resultant transgenic plants accumulated short interfering RNAs specific for the construct. All progenies from self-fertilized transgenic plants had strong and heritable resistance to RGDV infection and did not allow the propagation of RGDV. By contrast, our transgenic plants remained susceptible to Rice dwarf virus, another phytoreovirus. There were no significant changes in the morphology of our transgenic plants compared with non-inoculated wild-type rice plants, suggesting that genes critical for the growth of rice plants were unaffected. Our results demonstrate that the resistance to RGDV of our transgenic rice plants is not due to resistance to the vector insects but to specific inhibition of RGDV replication and that the designed trigger sequence is functioning normally. Thus, our strategy to target a gene for viroplasm matrix protein should be applicable to plant viruses that belong to the family Reoviridae.  相似文献   

10.
Thin sections of mature anthers and pollen grains from three lettuce (Lactuca sativa) plants infected with lettuce mosaic potyvirus (LMV) were studied by immunogold labelling. Labelled LMV particles were present externally on the exine of pollen grains from all plants, but were observed internally in the pollen grains from only one plant. Within mature pollen grains the virus particles were associated with the cytoplasmic bundle inclusions typical of infection by potyviruses. The tapetal plasmodium and the epidermal and endothecial layers of mature anthers from all infected plants also contained labelled virus particles, together with pinwheel and bundle inclusions.  相似文献   

11.
T. W. Fraser 《Protoplasma》1976,90(1-2):15-31
Summary Potato mop-top virus, one of the most commonly occurring viruses in virus tested stocks of seed potatoes in the United Kingdom induces four different haulm symptoms which are both climate and variety dependent. Ultrastructural examination showed that the aucuba symptom recognizable as bright yellow patches on the leaves, and the mop-top symptom characterised by the dwarfed and bunched habit of the plants, both contained in their leaf cells, tufts and clusters of microtubule-like elements, although the other ultrastructural features associated with each symptom were quite different. These mop-top tubules occurred in the cytoplasm, between the cell wall and the plasma membrane, and in the vacuole, and have been demonstrated in every cell type.The mop-top tubules were 18–22 nm wide with a 2.5–3.0 nm thick wall and often branched. No regular substructure could be discerned. Complete virus particles were rarely seen. These mop-top tubules are compared with plant microtubules and P-protein tubules, and the topic of viral inclusions and their relevance to virus classification is discussed.  相似文献   

12.
Summary Samples ofPelargonium zonale with different virus symptoms were collected from several gardens in Madrid. Inoculation to test plants and electron microscopy of the samples were made.2 viruses were isolate from the samples; by symptomatology, size of the virus particles, and distribution of the virions in the host cells, one of them (P1) was identified withPelargonium leaf curl and the other (P2) seems to be a previously undescribed virus. The virus P2 forms crystalline inclusions composed of virus particles in the vacuoles of the infected cells.  相似文献   

13.
14.
Hans Petzold 《Protoplasma》1967,64(2):120-133
Summary In healthy as well as dahlia mosaic sick plants ofVerbesina encelioides, Sanvitalia procumbens, Zinnia elegans, Calendula spec. andDahlia hybrids, leaf cell vacuoles are found in the marginal cytoplasm which contain protein crystals. They are single membrane-limited products of the endoplasmatic reticulum. They may be found mainly in the older leaves and especially in those of virus infected plants. The crystalline structures consist of tetragonally arranged tubules of 105 Å in diameter, separated by an interspace about 35 Å wide. There are similar structures in virus infected plants ofFragaria vesca, but not inChenopodium quinoa, where the vacuoles contain no bodies. This cell organelle is compared with crystalline inclusions already described. Its significance and relations to the virus disease are discussed.  相似文献   

15.
The causal agent of Chloris striate mosaic disease appears to be a virus with polyhedral particles 18 nm in diameter usually occurring as paired structures about 18 times 30 nm in negatively stained preparations. These particles were detected in the nuclei of infected plants forming characteristic inclusions in all cells except those of the epidermis. Such particles were not detected in thin sections of viruliferous leaf hopper vectors (Nesoclutha pallida). Purified virus preparations were shown to be highly infective when assayed by feeding vector leaf hoppers through membranes and confining them on indicator plants. In particle morphology, chloris striate mosaic virus (CSMV) differs from other viruses of Gramineae in Australia but resembles maize streak virus isolated in Africa, which however is serologically unrelated.  相似文献   

16.
A mutation resulting in substitution of positively charged Lys53 with negatively charged Glu in the coat protein was introduced in the infectious cDNA copy of the genome of wild-type tobacco mosaic virus strain U1. Kinetic analysis of long-distance virus transport in plants showed that systemic spread of the mutant virus was delayed by 5–6 days as compared with the wild-type one. On evidence of RNA sequencing in the mutant progeny, Glu50 of the coat protein was substituted with Lys after passage I to compensate for the loss of the positive charge at position 53. Electron microscopy revealed atypical inclusions (rodlike structures, multiple electron-dense globular particles) in the nuclear interchromatin space of leaf mesophyll cells infected with the mutant but not with the wild-type virus.  相似文献   

17.
A mutation resulting in substitution of positively charged Lys53 with negatively charged Glu in the coat protein was introduced in the infectious cDNA copy of the genome of wild-type tobacco mosaic virus strain U1. Kinetic analysis of long-distance virus transport in plants showed that systemic distribution of the mutant virus was delayed by 5-6 days as compared with the wild-type one. On evidence of RNA sequencing in the mutant progeny, Glu50 of the coat protein was substituted with Lys after passage I to compensate for the loss of the positive charge at position 53. Electron microscopy revealed atypical inclusions (rodlike structures, multiple electron-dense globular particles) in the nuclear interchromatin space of leaf mesophyll cells infected with the mutant but not with the wild-type virus.  相似文献   

18.
A virus was isolated from squirting cucumber (Ecballium elaterium L.) collected in France (Alpes de Haute Provence). After mechanical inoculation, eight species belonging to the Cucurbitaceae were found susceptible to this virus with systemic symptoms of mosaic, chlorotic spots, and fruit deformations. The French ZYFV (ZYFV-Fr) isolate differed from the type strain in its ability to infect some differential host plants. Elongated flexuous particles with a modal length of 752 nm were observed by electron microscopy in leaf extracts. Cytoplasmic inclusions similar to those associated with infections by members of the potyvirus group were observed by light microscopy. The virus was found by SDS-immunodiffusion and DAS-ELISA to be serologically related but distinct from the type strain of zucchini yellow fleck virus from Italy (ZYFV-lt). ZYFV has not yet been found in cultivated cucurbit plants in France; this virus appears to be restricted to squirting cucumbers in a few localities. The distribution of ZYFV in France is discussed.  相似文献   

19.
超薄切片电镜观察表明,在感染大麦黄花叶病毒(BaYMV)的大麦(品种“早熟3号”)叶肉细胞中,液泡周围偶而可看到病毒颗粒束,在发病后期黄化或坏死的叶肉细胞中,可见到散布的病毒颗粒。在所有表现症状的病叶叶肉细胞,表皮细胞和木质部薄壁细胞中均可观察到风轮体、束状体、板状集结体以及膜状体等细胞质内含体,未见 卷简体和细胞核内含体。感病初期细胞中,细胞质丰富,核糖体数量增加,内质网肥大,随着病毒症状发喂,叶绿体、线粒体等细胞器逐渐肿大,外膜破裂直至解体。  相似文献   

20.
We have developed combined transgene/virus vector systems for the expression of heterologous proteins in plants. The systems are based on the bipartite RNA plant virus, cowpea mosaic virus (CPMV), and involve the amplification of integrated copies of either full-length or deleted versions of RNA-2 carrying a foreign gene. In the case of plants transgenic for full-length versions of RNA-2 carrying the green fluorescent protein (GFP), amplification can be achieved by supplying RNA-1 either exogenously or by crossing. This allows either inducible or constitutive expression of the foreign gene and results in an infection that can be passaged to further plants. Replication of deleted versions of RNA-2 harbouring GFP requires the presence of both RNA-1 and a suppressor of gene silencing, a function which we show can be supplied by HcPro from potato virus Y. Replication of the deleted versions of RNA-2 can be achieved by supplying the suppressor and RNA-1 either exogenously or by crossing, showing that this system can also be used in an inducible and constitutive format. The use of deleted forms of RNA-2 has the advantage that no infectious virus is produced, providing an effective method of biocontainment. The CPMV-based systems have advantages over existing plant expression systems in terms of the expression levels obtainable and the simplicity and flexibility of use, and should be of great practical benefit in the development of plants as bioreactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号