首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Laboratory studies and a single field study have shown that heart rate in some reptiles is faster during heating than during cooling at any given body temperature. This phenomenon, which has been shown to reflect changes in peripheral blood flow, is shown here to occur in the lizard Varanus varius (lace monitor) in the wild. On a typical clear day, lizards emerged from their shelters in the morning to warm in the sun. Following this, animals were active, moving until they again entered a shelter in the evening. During their period of activity, body temperature was 34-36 degrees C in all six study animals (4.0-5.6 kg), but the animals rarely shuttled between sun and shade exposure. Heart rate during the morning heating period was significantly faster than during the evening cooling period. However, the ratio of heating to cooling heart rate decreased with increasing body temperature, being close to 2 at body temperatures of 22-24 degrees C and decreasing to 1.2-1.3 at body temperatures of 34-36 degrees C. There was a significant decrease in thermal time constants with increasing heart rate during heating and cooling confirming that changes in heart rate are linked to rates of heat exchange.  相似文献   

2.
It is found that serotonin content in the brain areas and heart of rats with low alcohol motivation decreases after 5 months of chronic consumption of 48% ethanol solution in a dose of 4 g/kg; in animals with high alcohol motivation serotonin content decreases only in the hypothalamus. Under chronic alcoholization for 1 and 12 months no considerable changes were found in serotonin level of the studied tissues. 60 min after intraperitoneal administration of 20% ethanol solution in a dose of 3 g/kg in intact animals there occurs an increase of serotonin content in the brain hemispheres and heart and its decrease in the hypothalamus; in rat with low alcohol motivation after taking ethanol for 5 months this administration evokes a decrease of serotonin content in the hypothalamus and truncus cerebri; in rats with high alcohol motivation--its decrease in the hypothalamus. Excretion of 5-oxyindoleacetic acid with urine decreases 10 months after alcohol intoxication. When rats were not given ethanol after its chronic taking for 3 months serotonin oxidation was intensified for the first day, which was not observed after 7-month alcoholization of animals.  相似文献   

3.
The aim of this study was to evaluate the thermophysiological indicators (TI) of the lambs during the different phases of pre-slaughter handling. Twenty animals were evaluated in two sample days. At each phase, the TI (rectal temperature, respiratory rate, and heart rate) and the environmental variables were measured. Additionally, the body surface temperature was measured by infrared thermography. During the landing phase, the air temperature was the highest (33.1 °C) and the relative humidity was the lowest (45.2%). ANOVA results showed a significant effect of the pre-slaughter phases on all the TI, except the heart rate. Beyond the pre-slaughter phases, the body region and its interaction with the pre-slaughter phases also showed significant influence on the surface temperature. We conclude that the pre-slaughter handling adopted in Northeast Brazil negatively influences the TI of small ruminants, specifically the lambs. Landing was the phase that rendered maximum physiological damage to the animals.  相似文献   

4.
The hypothalamic paraventricular nucleus (PVN) is an important integrative center in the brain. In the present study, we investigated whether the PVN is a key region in the mesenteric vasoconstriction that normally accompanies an increase in core body temperature. Anesthetized rats were monitored for blood pressure, heart rate, mesenteric blood flow, and vascular conductance. In control rats, elevation of core body temperature to 41 degrees C had no significant effect on blood pressure, increased heart rate, and reduced mesenteric blood flow by 21%. In a separate group of rats, muscimol was microinjected bilaterally (1 nmol/side) into the PVN. Compared with the control group, there was no significant difference in the blood pressure and heart rate responses elicited by the increase in core body temperature. In contrast to control animals, however, mesenteric blood flow did not fall in the muscimol-treated rats in response to the elevation in core body temperature. In a separate group, in which muscimol was microinjected into regions outside the PVN, elevating core body temperature elicited the normal reduction in mesenteric blood flow. The results suggest that the PVN may play a key role in the reflex decrease in mesenteric blood flow elicited by hyperthermia.  相似文献   

5.
The effect of insulin on the heart rate and body temperature, measured per rectum, of ground squirrels (Spermophilus undulatus) during triggered arousal from winter hibernation was studied. We found that the outcomes of insulin injection to hibernating ground squirrels varied in the course of arousal. During the first stage, while body temperatures were less than 10°C, the heart rates and rectal temperatures in both control and insulin-treated groups changed in the same manner. During the next stage of arousal, when the body temperature rose above 12°C, elevation of the heart rate and rectal temperature in the insulin-treated animals was significantly retarded and lasted 110 min compared to 80 min in the control group. Conversely, in the final stage of arousal at body temperatures above 20°C, the heart rate and body temperature increased more rapidly in the insulin-treated animals that reached normal body temperature within 40 min compared to 60 min in the control group. Suggested mechanisms of bidirectional effects of insulin on the heart rates and body temperatures in ground squirrels at the particular stages of arousal, with regard to the progression of endogenous insulin and glucose levels in the blood serum, are discussed.  相似文献   

6.
1. Whole-body exposure of animals to radiofrequency radiation (RFR) can cause an increase in body temperature. 2. Responses to heating, whether due to RFR or to more conventional means, include changes in heart rate and blood pressure. 3. Although cardiovascular responses to various types of heating are similar, differences in the magnitude of changes may result from different thermal gradients within the body. 4. This review compares the effects of RFR and conventional environmental heating on heart rate and blood pressure.  相似文献   

7.
The differences in physical properties of air and water pose unique behavioural and physiological demands on semiaquatic animals. The aim of this study was to describe the diving behaviour of the freshwater crocodile Crocodylus johnstoni in the wild and to assess the relationships between diving, body temperature, and heart rate. Time-depth recorders, temperature-sensitive radio transmitters, and heart rate transmitters were deployed on each of six C. johnstoni (4.0-26.5 kg), and data were obtained from five animals. Crocodiles showed the greatest diving activity in the morning (0600-1200 hours) and were least active at night, remaining at the water surface. Surprisingly, activity pattern was asynchronous with thermoregulation, and activity was correlated to light rather than to body temperature. Nonetheless, crocodiles thermoregulated and showed a typical heart rate hysteresis pattern (heart rate during heating greater than heart rate during cooling) in response to heating and cooling. Additionally, dive length decreased with increasing body temperature. Maximum diving length was 119.6 min, but the greatest proportion of diving time was spent on relatively short (<45 min) and shallow (<0.4 m) dives. A bradycardia was observed during diving, although heart rate during submergence was only 12% lower than when animals were at the surface.  相似文献   

8.
The effect of endotoxin on the body temperature of mice was studied in animals housed without bedding at an environmental temperature of 15 C. Rectal temperatures were measured during the initial 3 to 5 hr of exposure. Doses of endotoxin ranging from 0.01 to 1 ld(50), as determined for mice maintained at 25 C, produce a hypothermia in proportion to dose. Concurrent injection of tryptophan magnified this response in a dose-dependent manner. Cyproheptadine, an antiserotonin drug, antagonized both the hypothermia produced by serotonin alone, and the augmentation of hypothermia produced by tryptophan in endotoxin-poisoned mice. alpha-Methyltryptophan, an analogue of the amino acid that is known to induce tryptophan pyrrolase, also antagonized the increased hypothermia produced by tryptophan. These data support a previous suggestion that inhibition of tryptophan pyrrolase in endotoxin-poisoned mice has the effect of funneling injected tryptophan into the serotonin pathway.  相似文献   

9.
Temperature is one of the key environmental factors affecting the eco-physiological responses of living organisms and is considered one of the utmost crucial factors in shaping the fundamental niche of a species. The purpose of the present study is to delineate the physiological response and changes in energy allocation strategy of Bellamya bengalensis, a freshwater gastropod in the anticipated summer elevated temperature in the future by measuring the growth, body conditions (change in total weight, change in organ to flesh weight ratio), physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate and Scope for Growth) and thermal performance, Arrhenius breakpoint temperature (ABT), thermal critical maxima (CTmax), warming tolerance (WT) as well as thermal safety margin (TSM) through a mesocosm experiment. We exposed the animals to three different temperatures, 25 °C (average habitat temperature for this animal) and elevated temperatures 30 °C, 35 °C for 30 days and changes in energy budget were measured twice (on 15th and 30th day). Significant changes were observed in body conditions as well as physiological energetics. The total body weight as well as the organ/flesh weight ratio, ingestion followed by absorption rate decreased whereas, respiration and excretion rate increased with elevated temperature treatments resulting in a negative Scope for Growth in adverse conditions. Though no profound impact was found on ABT/CTmax, the peak of thermal curve was considerably declined for animals that were reared in higher temperature treatments. Our data reflects that thermal stress greatly impact the physiological functioning and growth patterns of B. bengalensis which might jeopardize the freshwater ecosystem functioning in future climate change scenario.  相似文献   

10.
The temperature of habitat water has a drastic influence on the behavioral, physiological and biochemical mechanisms of crustaceans. Hyperglycemia is a typical response of many aquatic animals to harmful physical and chemical environmental changes. In crustaceans increased circulating crustacean hyperglycemic hormone (CHH) and hyperglycemia are reported to occur following exposure to several environmental stress. The biogenic amine, serotonin has been found to modulate the CHH levels and oxidation of serotonin into its metabolites is catalysed by monoamine oxidase. The blue swimmer crab, Portunus pelagicus is a dominant intertidal species utilized throughout the indo-pacific region and is a particularly important species of Palk bay. It has high nutritional value and delicious taste and hence their requirements of capture and cultivation of this species are constantly increasing. This species experiences varying and increasing temperature levels as it resides in an higher intertidal zone of Thondi coast. The present study examines the effect of thermal stress on the levels of serotonin and crustacean hyperglycemic hormone in the hemolymph of P. pelagicus and analyzes the effect of the monoamine oxidase inhibitor, pargyline on serotonin and CHH level after thermal stress. The results showed increased levels of glucose, CHH and serotonin on exposure to 26 °C in control animals. Pargyline injected crabs showed highly significant increase in the levels of CHH and serotonin on every 2 °C increase or decrease in temperature. A greater CHH level of 268.86±2.87 fmol/ml and a greater serotonin level of 177.69±10.10 ng/ml was observed at 24 °C. This could be due to the effect of in maintaining the level of serotonin in the hemolymph and preventing its oxidation, which in turn induces hyperglycemia by releasing CHH into hemolymph. Thus, the study demonstrates the effect of thermal stress on the hemolymph metabolites studied and the role of pargyline in elevating the levels of serotonin and CHH on thermal stress in the blue swimmer crab, P. pelagicus.  相似文献   

11.
Buprenorphine is a potent analgesic commonly used clinically in humans and rodents experiencing severe pain. However, effects of therapeutic doses on locomotor activity and the cardiovascular system have not been studied in conscious animals. The effects of buprenorphine were therefore evaluated in this study using telemetric monitoring in conscious animals. Telemetry transmitters were implanted in the peritoneal cavity of Wistar rats with a pressure catheter in the aorta and electrodes for electrocardiogram (ECG) recording subcutaneously. After a single subcutaneous administration of saline, each rat was administered single subcutaneous doses of 0.006, 0.03 or 0.15 mg/kg body weight (bw) of buprenorphine. During a 10 h period after administration, buprenorphine induced a varying dose-dependent increase in body temperature, heart rate, dP/dt and systolic-diastolic blood pressure, as well as a corresponding decrease in QT time. At high dose, however, QT time was still decreased 24 h post-administration, but no arrhythmias or visual changes were observed in the ECG complex. Body temperature and heart rate increased at the high dose of buprenorphine, even at 20-24 h after administration. Moreover, the high dose of buprenorphine induced a biphasic response in diastolic blood pressure, with an early and pronounced increase that, at 14 h after administration, reversed to a decrease, failing to normalize within 24 h post-dosage. The results indicate that buprenorphine induces long-lasting effects (such as body temperature and cardiovascular effects) in the rat after a single subcutaneous dose at 0.15 mg/kg bw.  相似文献   

12.
Global climate change is one of the greatest threats to biodiversity; one of the most important effects is the increase in the mean earth surface temperature. However, another but poorly studied main characteristic of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We experimentally tested the effects of environmental temperature variability on characteristics associated to the fitness (body mass balance, growth rate, and survival), metabolic rate (VCO(2)) and molecular traits (heat shock protein expression, Hsp70), in an ectotherm, the terrestrial woodlouse Porcellio laevis. Our general hypotheses are that higher values of thermal amplitude may directly affect life-history traits, increasing metabolic cost and stress responses. At first, results supported our hypotheses showing a diversity of responses among characters to the experimental thermal treatments. We emphasize that knowledge about the cellular and physiological mechanisms by which animals cope with environmental changes is essential to understand the impact of mean climatic change and variability. Also, we consider that the studies that only incorporate only mean temperatures to predict the life-history, ecological and evolutionary impact of global temperature changes present important problems to predict the diversity of responses of the organism. This is because the analysis ignores the complexity and details of the molecular and physiological processes by which animals cope with environmental variability, as well as the life-history and demographic consequences of such variability.  相似文献   

13.
Free-roaming animals continually cope with changes in their environment. One of the most unpredictable environmental phenomena is weather. Being able to respond to weather appropriately is crucial as it can be a threat to survival. The stress response, consisting of increases in heart rate and release of glucocorticoids, is an important mechanism by which animals cope with stressors. This study examined behavioral, heart rate, and corticosterone responses of captive European starlings (Sturnus vulgaris) to two aspects of weather mimicked under controlled conditions, a subtle (3 °C) decrease in temperature and a short, mild bout of rain. Both decreased temperature and exposure to rain elicited increases in heart rate and corticosterone in non-molting starlings. Molt is an important life history stage in birds that affects feather cover and may require a different response to weather-related stressors. We repeated the experiment in molting starlings and found increases in heart rate in response to rain and cold wind. However, the hypothalamic–pituitary–adrenal (HPA)-axis was suppressed during molt, as molting starlings did not increase corticosterone release in response to either stimulus. These data suggest these stimuli induce increased allostatic load in starlings, and that animals may adjust their response depending on the life-history stage.  相似文献   

14.
It has been demonstrated that during winter hibernation (body temperature 2-4 degrees C), the heart rate in ground squirrels is equal to 100 10-12 beats/min. At the initial stage of the arousal, while body temperature remains still low (9-10 degrees C), the heart rate may increase up to 160-200 beats/min. At this stage, practically all electrophysiological parameters of the heart correspond to those in active animals. These results may indicate the ability of "cold" heart in arousing ground squirrels to operate as a normothermic organ and reveal certain role of the heart in body warming. Significant increase of the intensity of protein synthesis in cardiomyocytes together with periodic changes in protein composition of their membranes were found during arousal which may account for regulation of the level of metabolism in cells and for adaptation of the latter to different temperatures.  相似文献   

15.
The brain temperature, at which the cessation of the lung respiration occurs in the cooled animals, can be named the lower temperature limit of the brain functional competence, since at this temperature the spontaneous respiration is not restored on its own, and without special artificial undertakings the animals perish. In this study upon the total cooling of the rat bodies their lung respiration stopped completely as the temperature of the medulla oblongata in the region of the respiratory center decreased to 18.18 +/- 0.17 degrees C. This occurred simultaneously with an abrupt decrease in the heart rate and in the arterial blood pressure (AP) to 42 +/- 1 mm Hg. Upon an isolated cooling of the rat head the heart rate and AP were maintained at a comparatively high level. Under such conditions the lung respiration did not stop even as the temperature of the medulla oblongata decreased to 17.23 +/- 0.25 degrees C. It retained rhythmicallity, a particular rate, and a comparatively high amplitude. It is suggested that an intensive blood supply of the cooled brain decreases the lower temperature limit of its vital activity.  相似文献   

16.
Free-ranging animals continuously adjust to changes in their environment. The stress response, typified by increases in heart rate and glucocorticoids, is an important physiological response regulating these changes. This study investigated heart rate, corticosterone and behavioral responses of European starlings (Sturnus vulgaris) to a rapid 30min decrease in temperature using an air-conditioning unit. Ten wild-caught birds were divided into pairs and exposed to four different trials. Three trials were controls: undisturbed birds; exposing birds to only the noise of the air-conditioning unit; and exposing the birds to 20°C airflow. For the experimental trial birds were exposed to 12°C air, leading to a rapid but modest 3°C drop in ambient temperature inside the birdcages. Heart rate and behavior were recorded before and during trials, while blood samples were collected before and after each trial for corticosterone measurements. Cooling, but none of the control conditions, induced an increase in heart rate and corticosterone. Additionally, cooling led to an increase in perch hopping and feather ruffling. We conclude that minor changes in temperature can elicit a stress response in European starlings, which suggests that this may be an important mechanism by which animals cope with minor rapid environmental changes.  相似文献   

17.
The state of the serotonergic system was studied in adaptation of rats to short-term non-damaging stress actions along with the possibility of protecting the heart of conscious animals against arrhythmias in acute ischemia with the serotonin analogue 4-nitro-5-methoxytryptamine. It was shown that the adaptation resulted in a significant increase in rat midbrain serotonin by 70%. Preliminary administration of the serotonin analogue 3 fold reduced the total duration of arrhythmias and approximately 5 fold--the heart fibrillation rate and the death rate of animals in acute ischemia. The data obtained are in agreement with the idea on the role of stress-limiting systems in prevention of stress-induced and ischemic damages of the organism. They show that protective effects of metabolites of these systems can be successfully reproduced with their synthetic analogues or activators.  相似文献   

18.
The present study was undertaken to investigate the effectiveness of adrenergic antagonists carvedilol and propranolol on L-thyroxin-induced cardiovascular and metabolic disturbances in rats. Treatment with L-thyroxin sodium (75 mg/kg body mass, s.c., every alternate day for 3 weeks), produced a significant increase in food and water intake, body temperature, heart rate, systolic blood pressure, along with an increase in serum T3, T4, and triglyceride levels. Besides a significant reduction in body mass, serum levels of TSH and cholesterol were also reduced following L-thyroxin treatment. Carvedilol (10 mg/kg body mass, orally) and propranolol (10 mg/kg body mass, i.p.) administered daily in the third week to 2 separate groups of L-thyroxin-treated animals reversed thyroxin-induced loss in body mass and rise in body temperature, blood pressure, and heart rate. Propranolol treatment increased TSH levels and decreased T3 and T4 levels in hyperthyroid animals, whereas carvedilol did not produce any effect on thyroid hormones. Carvedilol treatment reversed thyroxin induced hypertriglyceridemia, whereas propranolol treatment had no effect. Both carvedilol and propranolol prevented decrease in cholesterol levels induced by thyroxine. Compared with normal animals, L-thyroxin-treated animals showed a state of hyperglycemia, hyperinsulinaemia, impaired glucose tolerance, and insulin resistance, as inferred from elevated fasting serum glucose and insulin levels, higher area under the curve over 120 min for glucose, and decreased insulin sensitivity index (KITT). Propranolol and carvedilol treatment significantly decreased fasting serum glucose levels. Treatment with propranolol did not alter serum insulin levels, area-under-the-curve glucose, or KITT values. However, treatment with carvedilol significantly reduced area-under-the-curve glucose, decreased fasting serum insulin levels and significantly increased KITT values. In conclusion, carvedilol appears to produce favorable effects on insulin sensitivity and glycemic control and can therefore be considered as more efficacious adjunctive treatment than propranolol in hyperthyroidism.  相似文献   

19.
Abstract: The effect of treatment with acute fluoxetine, a serotonin reuptake inhibitor, on the rate of serotonin synthesis in the rat brain was studied through autoradiography following intravenous administration of α-methyl-l -[3H]tryptophan. The rate of serotonin synthesis in fluoxetine-treated rats was compared with the rate measured in sham-treated rats (saline injection). Results showed a significant increase in the rate of synthesis in the majority of cerebral structures examined. The greatest increase (given as a percentage of rates in control animals) in the rate of serotonin synthesis was observed in the substantia nigra compacta (344%), hippocampus-CA3 (337%), dorsal hippocampus (283%), and caudate-putamen (232%). Fluoxetine had a less significant effect on the rate of synthesis in the pineal body (44%). Data suggest that acute fluoxetine treatment (30 mg/kg, i.p.) enhances the rate of serotonin synthesis in all the structures of rat brain examined in this work.  相似文献   

20.
Circadian rhythms of body temperature, heart rate, and locomotor activity were observed in the unanesthetized and unrestrained Syrian hamsters, Djungarian hamsters and Chinese hamsters, and the differences in these biological characters among the three species of hamster were investigated. In each species, body temperature, heart rate, and locomotor activity in the dark period were higher than those in the light period. Heart rate of Chinese hamsters was higher than that of the others in both the light and dark periods. In addition, it was found that the body temperature of Djungarian hamsters decreased rapidly one time a day. These results show species differences in body temperature, heart rate and locomotor activity of Syrian, Djungarian and Chinese hamsters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号