首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Picea asperata is a dominant species in the subalpine coniferous forests distributed in eastern edges of Tibetan Plateau and upper reaches of the Yangtze River. The paper mainly identified the short-term influences of experimental warming, nitrogen fertilization, and their combination on growth and physiological performances of Picea asperata seedlings. These seedlings were subjected to two levels of temperature (ambient; infrared heater warming) and two nitrogen levels (0; 25 g m−2 a−1 N) for 6 months. We used a free air temperature increase of overhead infrared heater to raise both air and soil temperature by 2.1 and 2.6°C, respectively. The temperature increment induced an obvious enhancement in biomass accumulation and the maximum net photosynthetic rate, and decreased AOS and MDA level under ambient nitrogen conditions. Whereas, negative effects of experimental warming on growth and physiology was observed under nitrogen fertilization condition. On the other hand, nitrogen fertilization significantly improved plant growth in unwarmed plots, by stimulating total biomass, maximum net photosynthetic rate (A max), antioxidant compounds, as well as reducing the content of AOS and MDA. However, in warmed plots, nitrogen addition clearly decreased A max, antioxidant compounds, and induced higher accumulation of AOS and MDA. Obviously, the beneficial effects of sole nitrogen on growth and physiology of Picea asperata seedlings could not be magnified by artificial warming.  相似文献   

2.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

3.
The short-term effects of two levels of air temperature (ambient and warmed) and light (full light and ca. 10% of full light regimes) on the early growth and physiology of Picea asperata and Abies faxoniana seedlings was determined using open-top chambers (OTC). The OTC manipulation increased mean air temperature and soil surface temperature by 0.51°C and 0.34°C under the 60-year plantation, and 0.69°C and 0.41°C under the forest opening, respectively. Warming, with either full-light or low-light conditions, generally caused a significant increase in plant growth, biomass accumulation, and stimulated photosynthetic performance of P. asperata seedlings. However, the warming of A. faxoniana seedlings only significantly increased their growth under low-light conditions, possibly as a result of photoinhibition caused by full light, which may shield and/or impair the effects of warming manipulation, per se, on the growth and physiological performance of A. faxoniana seedlings. In response to warming, P. asperata seedlings allocated relatively more biomass to roots and A. faxoniana more to foliage under similar environments. This might provide A. faxoniana with an adaptive advantage when soil moisture was not limiting and an advantage to P. asperata if substantial moisture stress occurred. Warming markedly increased the efficiency of PSII in terms of the increase in F v/F m and photosynthetic pigment concentrations for the two conifer seedlings, but the effects of warming were generally more pronounced under low-light conditions than under full-light conditions. On balance, this study suggested that warming had a beneficial impact on the early growth and development of conifer seedlings, at least in the short term. Consequently, warming may lead to changes in forest regeneration dynamics and species composition for subalpine coniferous ecosystems under future climate change.  相似文献   

4.
Sparse Ulmus pumila woodlands play an important role in contributing to ecosystem function in semi-arid grassland of northern China. To understand the key attributes of soil carbon cycling in U. pumila woodland, we studied dynamics of soil respiration in the canopy field (i.e., the projected crown cover area) and the open field at locations differing in distance (i.e., at 1–1.5, 3–4, 10, and >15 m) to tree stems from July through September of 2005, and measured soil biotic factors (e.g., fine root mass, soil microbial biomass, and activity) and abiotic factors [e.g., soil water content (SWC) and organic carbon] in mid-August. Soil respiration was further separated into root component and microbial component at the end of the field measurement in September. Results showed that soil respiration had a significant exponent relationship with soil temperature at 10-cm depth. The temperature sensitivity index of soil respiration, Q 10, was lower than the global average of 2.0, and declined significantly (P < 0.05) with distance. The rate of soil respiration was generally greater in the canopy field than in the open field; monthly mean of soil respiration was 305.5–730.8 mg CO2 m−2 h−1 in the canopy field and 299.6–443.1 mg CO2 m−2 h−1 in the open field from July through September; basal soil respiration at 10°C declined with distance, and varied from ~250 mg CO2 m−2 h−1 near tree stems to <200 mg CO2 m−2 h−1 in the open field. Variations in soil respiration with distance were consistent with patterns of SWC, fine root mass, microbial biomass and activities. Regression analysis indicated that soil respiration was tightly coupled with microbial respiration and only weakly related to root respiration. Overall, variations in SWC, soil nutrients, microbial biomass, and microbial activity are largely responsible for the spatial heterogeneity of soil respiration in this semi-arid U. pumila woodland.  相似文献   

5.
Previous studies about the effects of experimental warming on tree species have focused primarily on response of morphology and physiology in leaf and biomass allocation in the growing season, and a few studies considered the importance of roots. Based on the available evidence, it is unclear whether photosynthesis rate is enhanced by night warming in late autumn an issue that deserves further investigation. Thus, we exposed two coniferous species, Picea asperata and Abies faxoniana, to night warming continued throughout the year to investigate morphological and physiological responses of roots and leaves in the autumn. The results showed that night warming caused significant increases in net influxes of NH4+ and NO3 in P. asperata seedlings corresponding well with net H+ efflux and net influx of O2. Meanwhile, night warming had a positive effect on foliar gas exchange such as net photosynthesis rate, apparent quantum efficiency, dark respiration rate and maximum quantum efficiency of PS II, and nitrate reductase activity of roots. Additionally, root morphology such as total roots length, surface area, specific root area and specific root length was also stimulated by night warming. In contrast, night warming decreased concentrations of non-structural carbohydrate in leaves and roots of both species in autumn. The present study demonstrates that night warming would enhance late autumn leaf photosynthetic rate, and increase N uptake capacity of roots.  相似文献   

6.

Aim

This study aimed at predicting how sub-alpine coniferous ecosystems respond to global changes in the Eastern Tibetan Plateau by understanding soil microbial communities and activities, as well as variation in the quality and quantity of soil organic matter.

Methods

An experiment was conducted to examine soil microbial communities and their related soil processes in rhizospheric soil of two coniferous species that were exposed to two levels of temperature (unwarmed and infrared heater warming) and two levels of nitrogen (unfertilized and 25 g N m?2 a?1) from April 2007.

Results

Four-year night warming alone slightly affected the phospholipid fatty acid contents of the microbial community. However, the combination of nitrogen addition and soil warming significantly affected soil microbial composition while reducing the biomass of major microbial groups and the activities of most enzymes, especially in Abies faxoniana plots. The combination of warming and nitrogen addition increased soil labile C and N pools in Picea asperata plots and was beneficial for soil recalcitrant C, as well as for labile and total C and N pools in A. faxoniana plots.

Conclusion

Results indicated that future warming will slightly affect soil microbial communities and their related soil processes. However, warming combined with high nitrogen deposition will significantly constrain soil microbial biomass and enzyme activities, consequently increasing soil C and N pools in sub-alpine coniferous forests of this region.  相似文献   

7.
The response and adaption mechanisms of seedlings under long-term warming have remained largely unknown. In this study, we investigated the effects of warming for 6 years on growth, and needle carbon, nitrogen, chlorophyll, and carbohydrate levels in a coniferous tree species, Abies faxoniana. Seedlings were grown in even-aged monospecific stands under ambient and warming (ambient +2.2°C) temperature in climate control chambers. Warming caused statistically significant increases in the specific leaf area, leaf area ratio, root biomass, leaf biomass, branch biomass, stem biomass, and total mass of the seedlings, and reduced the root/shoot ratio. Warming also increased total chlorophyll concentrations, specific chlorophyll pigments, and Chlorophyll a/b ratios in both studied needle age classes. In addition, C/N ratios of current-year and 1-year-old needles increased by warming. In contrast, warming decreased the levels of N, sugar, cellulose, and starch in needles, while warming had no effect on the height, stem diameter, needle mass ratio, root mass ratio, and root/needle ratio. We conclude that warming increases branch growth and changes needle chemistry, which enhances the light capture potential of seedlings.  相似文献   

8.
Carbon dioxide is released from the soil to the atmosphere in heterotrophic respiration when the dead organic matter is used for substrates for soil micro-organisms and soil animals. Respiration of roots and mycorrhiza is another major source of carbon dioxide in soil CO2 efflux. The partitioning of these two fluxes is essential for understanding the carbon balance of forest ecosystems and for modelling the carbon cycle within these ecosystems. In this study, we determined the carbon balance of three common tree species in boreal forest zone, Scots pine, Norway spruce, and Silver birch with gas exchange measurements conducted in laboratory in controlled temperature and light conditions. We also studied the allocation pattern of assimilated carbon with 14C pulse labelling experiment. The photosynthetic light responses of the tree species were substantially different. The maximum photosynthetic capacity (P max) was 2.21 μg CO2 s−1 g−1 in Scots pine, 1.22 μg CO2 s−1 g−1 in Norway spruce and 3.01 μg CO2 s−1 g−1 in Silver birch seedlings. According to the pulse labelling experiments, 43–75% of the assimilated carbon remained in the aboveground parts of the seedlings. The amount of carbon allocated to root and rhizosphere respiration was about 9–26%, and the amount of carbon allocated to root and ectomycorrhizal biomass about 13–21% of the total assimilated CO2. The 14CO2 pulse reached the root system within few hours after the labelling and most of the pulse had passed the root system after 48 h. The transport rate of carbon from shoot to roots was fastest in Silver birch seedlings.  相似文献   

9.
Despite the obvious importance of roots to agro‐ecosystem functioning, few studies have attempted to examine the effects of warming on root biomass and distribution, especially under different tillage systems. In this study, we performed a field warming experiment using infrared heaters on winter wheat, in long‐term conventional tillage and no‐tillage plots, to determine the responses of root biomass and distribution to warming. Soil monoliths were collected from three soil depths (0–10, 10–20, and 20–30 cm). Results showed that root biomass was noticeably increased under both till and no‐till tillage systems (12.1% and 12.9% in 2011, and 9.9% and 14.5% in 2013, in the two tillage systems, respectively) in the 0–30 cm depth, associated with a similar increase in shoot biomass. However, warming‐induced root biomass increases occurred in the deeper soil layers (i.e., 10–20 and 20–30 cm) in till, while the increase in no‐till was focused in the surface layer (0–10 cm). Differences in the warming‐induced increases in root biomass between till and no‐till were positively correlated with the differences in soil total nitrogen (R2 = .863, < .001) and soil bulk density (R2 = .853, < .001). Knowledge of the distribution of wheat root in response to warming should help manage nutrient application and cycling of soil C‐N pools under anticipated climate change conditions.  相似文献   

10.
Abies fabri (Mast.) Craib is an endemic and dominant species in typical subalpine dark coniferous forests distributed in the eastern Tibetan Plateau. To assess how A. fabri may respond and adapt to future climate changes, we investigated the effects of drought and warming on the growth, resource allocation in biomass, membrane stability, and oxidative stress of the seedlings over two growing seasons. Drought (11.4 % average reduction in soil moisture) was created by excluding natural precipitation with a plastic roof and warming was performed by an infrared heater above the plots. Drought increased root length, the root-to-shoot ratio, N concentration, and N/P ratio in all organs, and decreased seedling height and C/N ratio in all organs. Moreover, warming (2 °C) decreased seedling height, root length, total biomass, and N concentration in stems but increased the C/N ratio. Furthermore, the combination of drought and warming decreased seedling height and biomass in all organs, which further increased the N concentration and N/P ratio in all organs. A significant decrease in the membrane stability index and an increase in malondialdehyde, superoxide radical (O2 ?), and hydrogen peroxide (H2O2) were exactly matched with a dramatic decrease of total biomass under the combination of drought and warming treatment. Together these results implied that drought alone and warming alone were unfavorable for the early growth of A. fabri, and drought plus warming will intensify the opposite effect of drought alone or warming alone. Moreover, N will be a limited nutrient under extant and future climate changes.  相似文献   

11.
Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m?2 a?1). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g?1 root biomass h?1), II (μg C cm?1 root length h?1) and III (μg C cm?2 root area h?1) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root‐derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R2 = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root‐microbe interactions influence soil organic matter decomposition and N cycling should be incorporated into climate‐carbon cycle models to determine reliable estimates of long‐term C storage in forests.  相似文献   

12.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

13.
Abies faxoniana is a key species in reforestation processes in the southeast of the Qinghai-Tibetan Plateau of China. The changes in growth, photosynthesis and nutrient status of A. faxoniana seedlings exposed to enhanced ultraviolet-B (UV-B), nitrogen supply and their combination were investigated. The experimental design included two levels of UV-B treatments (ambient UV-B, 11.02 KJ m−2 day−1; enhanced UV-B, 14.33 KJ m−2 day−1) and two nitrogen levels (0; 20 g N m−2). The results indicated that: (1) enhanced UV-B significantly caused a marked decline in growth parameters, net photosynthetic rate (Pn), photosynthetic pigments and F v/F m, (2) supplemental nitrogen supply increased the accumulation of total biomass, Pn, photosynthetic pigments and F v/F m under ambient UV-B, whereas supplemental nitrogen supply reduced Pn, and not affect biomass under enhanced UV-B, (3) enhanced UV-B or nitrogen supply changed the concentration of nutrient elements of various organs.  相似文献   

14.
以西南亚高山针叶林优势种——粗枝云杉(Picea asperata)为研究对象,探究不同土壤水分状况和氮添加下云杉碳氮化学计量比的变化及其响应过程。采用两因素(水分×氮素)随机区组实验,设置5个土壤水分梯度和3个氮添加浓度,其中土壤水分梯度分别是土壤田间持水量的40%(W1)、50%(W2)、60%(W3)、80%(W4)和100%(W5),氮添加浓度分别为0(N0)、20(N1)、40(N2)gNm~(-2) a~(-1)。结果表明:(1)土壤水分和氮添加显著影响了云杉碳氮化学计量比(P0.05),具体为:云杉植株和器官碳氮比在N0W4处理下最大值,随土壤水分有效性的降低而减小,随氮添加浓度的增加而降低。(2)随土壤水分有效性的降低,根和叶的碳含量显著升高(P0.05),茎和叶的碳含量随着氮添加浓度的增加而降低。此外,土壤水分有效性的降低显著提高了根和茎的氮含量(P0.05),各器官的氮含量随着氮添加浓度的增加而增加。在相同水分和氮添加浓度处理下表现为碳含量:叶茎根,氮含量:叶根茎。(3)云杉净光合速率随土壤水分有效性的降低先升高后降低,随氮添加浓度增加而增加,在N2W4达到最大。(4)根对NH~+_4和NO~-_3的净吸收速率随土壤水分有效性的降低而减小,随氮添加浓度的增加而显著增加(P0.05)。此外,根对NH~+_4的净吸收速率与土壤有效氮含量呈显著负相关关系(P0.05)。本研究表明,土壤水分和氮添加影响了云杉的碳同化和氮吸收过程,改变植物的碳、氮分配策略和养分利用效率,从而导致碳氮比的变化。  相似文献   

15.
陈智  尹华军  卫云燕  刘庆 《植物生态学报》2010,34(11):1254-1264
开展亚高山针叶林典型林地土壤有效氮和微生物特性对气候变化的响应研究, 对预测未来气候变化背景下亚高山针叶林生态系统C、N的源/汇功能具有重要意义。该文采用红外辐射加热器模拟增温结合外施氮肥的方法, 研究了川西亚高山针叶林下土壤化学特性、有效氮含量以及微生物生物量对夜间增温和施氮的短期响应。结果表明: 在模拟增温试验期间(2009年4月-2010年4月), 空气平均温度和5 cm土壤平均温度分别比对照提高了1.93和4.19 ℃, 增温幅度分别以夏季和冬季最为显著。增温对土壤pH值、有机碳、全氮和微生物生物量无显著影响。增温在试验前期降低了土壤NH4 +-N含量, 增加了NO3 --N含量, 其影响程度随着增温时间的延长而下降。施氮显著增加了有效氮和微生物生物量氮, 降低了土壤pH值, 使土壤表现出明显的酸化现象。与单独的增温和施氮处理相比, 增温和施氮联合处理对林下土壤的有效氮和微生物特性有显著的交互作用, 显著增加了土壤的有机碳、有效氮及土壤微生物生物量氮含量, 并导致土壤进一步酸化。结果说明, 川西亚高山针叶林的土壤有效氮和微生物特性对土壤氮素状况的变化反应敏感, 而林下土壤有效氮和微生物特性对单独的温度升高表现出一定的适应性, 但更对增温和施氮双因素结合处理反应敏感且表现出不同的响应方式。因此, 该区域在未来全球变化下的氮沉降状况及气候变化的多因素协同效应值得长期深入的探讨。  相似文献   

16.
The present study investigated the effect of nitrogen source (NH4+; NO3) at different concentrations on the accumulation of biomass and secondary metabolites in adventitious root cultures of Hypericum perforatum L. Cultures were initiated in shake flasks by using half-strength Murashige and Skoog (MS) medium with B5 vitamins, 1.0 mg l−1 indole-3-butyric acid, 0.1 mg l−1 kinetin, 3% (w/v) sucrose, and different ratios of ammonium and nitrate (0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM, using NH4Cl and KNO3). The cultures were maintained in darkness. The medium supplemented with 5:25 (mM) NH4+/NO3 resulted in the optimum accumulation of biomass and total phenols and flavonoids. The antioxidant potential of a methanolic extract, measured as the 1, 1-diphenyl-2-picrylhydrazyl and 2, 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activities, of H. perforatum adventitious roots showed that antioxidant activity was high from root extracts that were grown on higher concentrations of NO3 nitrogen (15, 20, and 25 mM). Further, assessment of hydrogen peroxide (H2O2) and malondialdehyde content of the root extracts revealed that cultures supplemented with higher levels of NO3 nitrogen (15–30 mM) were under oxidative stress, which boosted the levels of secondary metabolites in the adventitious roots. These results suggest that optimal adventitious root biomass could be achieved with the supplementation of cultures with 5:25 ratios of MS nitrogen sources.  相似文献   

17.
Very fine roots (<0.5 mm in diameter) of forest trees may serve as better indicators of root function than the traditional category of <2 mm, but how these roots will exhibit the plasticity of species-specific traits in response to heterogeneous soil nutrients is unknown. Here, we examined the vertical distribution of biomass and morphological and physiological traits of fine roots across three narrow diameter classes (<0.5, 0.5–1.0, and 1.0–2.0 mm) of Quercus serrata and Ilex pedunculosa at five soil depths down to 50 cm in a broad-leaved temperate forest. In both species, biomass and the allocation of very fine roots were higher in the surface soil but lower below 10-cm soil depth compared to values for larger roots (0.5–2.0 mm). When we applied these diameter classes, only very fine roots of Q. serrata exhibited significant changes in specific root length (SRL; m g−1) and root nitrogen (N) concentrations with soil depth, whereas the N concentrations only changed significantly in I. pedunculosa. The SRL and root N concentrations of larger roots in the two species did not significantly differ among soil depths. Thus, very fine roots may exhibit species-specific traits and change their potential for nutrient and water uptake in response to soil depth by plasticity in root biomass, the length, and the N in response to available resources.  相似文献   

18.
细根是植物吸收水分和养分的主要器官。全球变暖背景下,研究森林细根生物量及其环境因子的变化对生态系统碳平衡、碳收支及其贡献率具有重要意义。采用土钻法和室内分析法对青海省森林6个海拔梯度上5种林分类型的细根生物量和土壤理化性质进行测定,并分析了与环境因子之间的相互关系。结果表明:(1)青海省森林0—40 cm土层总细根生物量平均为8.50 t/hm~2,随着海拔梯度的增加先降低后升高,不同海拔梯度细根生物量差异显著(P0.05),最大值出现在2100—2400 m处。(2)5种林分0—40 cm土层总细根生物量为:白桦白杨云杉圆柏山杨,不同林分间细根生物量差异不显著。(3)细根垂直分布随土层深度增加而减少,且70%的细根集中在表层(0—20 cm)。(4)土壤容重深层(20—40 cm)显著大于表层(P0.05),并随海拔梯度逐步增加,且林分间差异较大。(5)全碳(Total carbon, TC)、全氮(Total nitrogen, TN)、全磷(Total phosphorus, TP)含量表层显著高于深层。TC、TN随海拔升高先增后降低,TP则随海拔逐步降低。不同林分间土壤养分差异较明显。(6)结构方程模型分析得到海拔、土层、容重直接影响细根生物量,细根生物量直接影响土壤养分。林分类型通过土壤容重间接影响细根生物量。因此,林分和海拔通过影响土壤微环境而影响到细根生物量及其空间分布格局。  相似文献   

19.
A manipulated increase in acid deposition (15 kg S ha−1), carried out for three months in a mature Scots pine (Pinus sylvestris) stand on a podzol, acidified the soil and raised dissolved Al at concentrations above the critical level of 5 mg l−1 previously determined in a controlled experiment with Scots pine seedlings. The induced soil acidification reduced tree fine root density and biomass significantly in the top 15 cm of soil in the field. The results suggested that the reduction in fine root growth was a response not simply to high Al in solution but to the depletion of exchangeable Ca and Mg in the organic layer, K deficiency, the increase in NH4:NO3 ratio in solution and the high proton input to the soil by the acid manipulation. The results from this study could not justify the hypothesis of Al-induced root damage under field conditions, at least not in the short term. However, the study suggests that a short exposure to soil acidity may affect the fine root growth of mature Scots pine.  相似文献   

20.
Litterfall and fine root production were measured for three years as part of a carbon balance study of three forest stands in the Pacific Northwest of the United States. A young second-growth Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] stand, a second-growth Douglas-fir with red alder (Alnus rubra Bong.) stand, and an old-growth (∼550 years) Douglas-fir stand were monitored for inputs of carbon and nitrogen into the soil from litterfall and fine root production, as well as changes in soil C and N. Fine root production and soil nutrient changes were measured through the use of soil ingrowth bags containing homogenized soil from the respective stands. Litterfall biomass was greatest in the Douglas-fir-alder stand (527 g m−2 yr−1) that annually returned nearly three times the amount of N as the other stands. Mean residence time for forest floor material was also shortest at this site averaging 4.6 years and 5.5 years for C an N, respectively. Fine root production in the upper 20 cm ranged from 584 g m−2 in the N rich Douglas-fir-alder stand to 836 g m−2 in the old-growth stand. Fine root production (down to one meter) was always greater than litterfall with a below:above ratio ranging from 3.73 for the young Douglas-fir stand to 1.62 for the Douglas-fir-alder stand. The below:above N ratios for all three stands closely approximate those for biomass. Soil changes in both C and N differed by site, but the soil C changes in the old-growth stand mirrored those obtained in an ongoing CO2 flux study. Results from the soil ingrowth bags strongly suggest that this method provides a simple, but sufficient device for measuring potential fine root biomass production as well as soil chemical changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号