首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inositol trisphosphate (InsP3) production and cytosolic free Ca2+ ([Ca2+]i) elevations induced by leukotriene B4 (LTB4)-receptor activation were studied in the human promyelocytic-leukaemia cell line HL60, induced to differentiate by retinoic acid. The myeloid-differentiated HL60 cells respond to LTB4 by raising their [Ca2+]i with a dose-response relationship similar to that shown by normal human neutrophils. The observations of the LTB4 transduction mechanism were compared with those of the transduction mechanism of the chemotactic peptide fMet-Leu-Phe in HL60 cells differentiated with dimethyl sulphoxide. Both LTB4 and fMet-Leu-Phe triggered a rapid (less than 5 s) elevation of [Ca2+]i, which occurred in parallel with the InsP3 production from myo-[3H]inositol-labelled cells. The threshold concentrations of the agonists, for InsP3 production, were found at 10(-9) M, a slightly higher concentration than that required to detect [Ca2+]i elevations. No significant changes were noted in the phosphoinositide levels upon stimulation with LTB4. Exposure to Bordetella pertussis toxin before LTB4 stimulation abolished both the increased formation of InsP3 and the rise of [Ca2+]i. LTB4 and fMet-Leu-Phe elicited elevations of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] with no detectable lag time, followed by slower and more sustained inositol 1,3,4-trisphosphate elevations. Stimulation with various leukotriene analogues revealed a good correlation between both total InsP3 as well as Ins(1,4,5)P3 formation and elevations of [Ca2+]1. Thus LTB4 receptor activation results in an increased production of Ins(1,4,5)P3 via a transduction mechanism also involving a nucleotide regulatory protein, as previously described for the fMet-Leu-Phe transduction mechanism.  相似文献   

2.
Following its addition to a suspension of rabbit neutrophils, leukotriene B4 is rapidly (less than 1 min) recovered from the cytoskeletal fraction (Triton X-100 insoluble pellet) of these cells. The association of leukotriene B4 with the cytoskeleton can be competed with by leukotriene B4 itself and by 20-OH leukotriene B4 but not by 20-COOH leukotriene B4. In addition, the preincubation of the cells with fMet-Leu-Phe or with phorbol 12-myristate 13-acetate, but not with 4 alpha-phorbol 12,13-didecanoate, results in a greatly decreased association of leukotriene B4 with the cytoskeleton. These results suggest that a specific association between the leukotriene B4 receptors and the cytoskeleton may be involved in signal transduction in the leukotriene B4 stimulated neutrophils.  相似文献   

3.
Stimulation of rabbit neutrophils by the chemotactic factors fMet-Leu-Phe and leukotriene B4, by platelet activating factor, or by arachidonic acid produces a rapid and dose-dependent increase in the amounts of actin and of a 65,000-mol-wt protein associated with the cytoskeleton. Phorbol 12-myristate, 13-acetate, the calcium ionophore A23187 in the presence or absence of EGTA, and the fluorescent calcium chelator quin-2 also cause an increase in cytoskeletal actin. The stimulated increases in the cytoskeletal actin are not dependent on a rise in the intracellular concentration of free calcium and are not mediated by an increase in the intracellular pH or activation of protein kinase C. The increases in the cytoskeletal actin produced by fMet-Leu-Phe and leukotriene B4, but not by phorbol 12-myristate, 13-acetate, are inhibited by high osmolarity. The effect of hyperosmolarity requires a decrease in cell volume, is not mediated by an increase in basal intracellular concentration of free calcium, and is not prevented by pretreating the cells with amiloride. Preincubation of the cells with hyperosmotic solution also inhibits degranulation produced by all the stimuli tested. The inhibitory action of high osmolarity on the fMet-Leu-Phe and leukotriene B4 induced stimulation of cytoskeletal actin is discussed in terms of the possibility that the addition of high osmolarity, either directly or through activation of protein kinase C, causes receptor uncoupling.  相似文献   

4.
Exposure of HL-60 cells for 6 days to a combination of 1.25% (v/v) dimethyl sulfoxide and 10 microM dexamethasone induces myeloid differentiation which results in a cell with many of the characteristics of a mature granulocyte. At 4 degrees C myeloid differentiated, but not undifferentiated, monocytic differentiated or eosinophilic differentiated HL-60 cells display marked specific leukotriene B4 binding. Leukotriene B4 binding at 4 degrees C reaches a maximum within 10 min, is readily reversed by unlabeled leukotriene B4, and is stereospecific. Only molecules with structural and biological similarity to leukotriene B4 can competitively inhibit leukotriene B4 binding. Scatchard analysis at 4 degrees C in differentiated cells shows two classes of binding sites. The high affinity sites have a Kd of 0.27 nM and a Bmax of 14.8 fmol/10(7) cells; the low affinity sites have a Kd of 0.58 microM and a Bmax of 2453 fmol/10(7) cells. The appearance of specific leukotriene B4 binding sites in the myeloid differentiated cells correlates with their ability to chemotax in response to leukotriene B4. Undifferentiated cells do not chemotax to leukotriene B4. At 37 degrees C leukotriene B4 is incorporated into phospholipid and triglyceride species in both undifferentiated and myeloid differentiated HL-60 cells making binding studies at 37 degrees C in intact cells impossible. No evidence of omega-hydroxylase activity was found in HL-60 cells. These data suggest that the HL-60 cell may be an excellent model system for the study of leukotriene B4 receptor binding, processing, and gene expression.  相似文献   

5.
The addition of pertussis toxin to rabbit neutrophils inhibits the rise in the intracellular concentration of free calcium induced by the chemotactic factors fMet-Leu-Phe and leukotriene B4. At high concentrations of fMet-Leu-Phe, the inhibitory effect of the toxin is more on the stimulus-induced increase in membrane permeability to calcium than on calcium mobilization from internal stores. These results suggest that the "G protein" system either directly or indirectly is involved in the regulation of the stimulus-induced changes in the calcium mobilization and/or gating systems.  相似文献   

6.
Membranes of myeloid differentiated human leukemia (HL 60) cells contain receptors for the chemotactic peptide, fMet-Leu-Phe (fMet, N-formylmethionine), interacting with pertussis-toxin-sensitive guanine-nucleotide-binding proteins (G proteins). Agonist activation of the receptors increases binding of the GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to membrane G proteins, at 30 degrees C only in the presence of exogenous GDP. In contrast, at 0 degrees C fMet-Leu-Phe stimulated binding of GTP[S] to G proteins maximally without addition of GDP. Under conditions resulting in marked degradation of membrane-bound GDP, control binding of GTP[S] measured at 0 degrees C was significantly increased, whereas the extent of agonist-stimulated binding was reduced. Furthermore, there was a rapid spontaneous release of membrane-bound GDP at 30 degrees C, but not at 0 degrees C. The data suggest that in intact membranes of HL 60 cells G proteins are initially in a GDP-liganded form, which state allows the receptor-induced exchange of bound GDP for GTP[S] at low temperature. In contrast, at or near physiological temperature, bound GDP is rapidly released (and degraded), resulting in unligated G proteins to which GTP[S] will bind independently of agonist-activated receptors.  相似文献   

7.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is an in vitro and in vivo stimulator of human bone marrow myelomonocytic precursor cells and mature granulocyte and macrophage effector cells. We have compared the effect of GM-CSF on the synthesis of 5-lipoxygenase products induced by the chemotactic peptide fMet-Leu-Phe and the calcium ionophore A23187 in human neutrophils. Although GM-CSF alone did not stimulate detectable synthesis of products of the 5-lipoxygenase pathway, pre-incubation of neutrophils with 200 pM GM-CSF for 1 hour at 23 degrees C enhanced synthesis of leukotriene B4, its all-trans isomers and omega-oxidation products, and 5-hydroxyeicosatetraenoic acid in response to both the calcium ionophore A23187 (1.5 microM), and the chemotactic peptide fMet-Leu-Phe (0.1 microM). This priming effect of GM-CSF was maximal after a 60 min incubation at 23 degrees C, or after a 30 min preincubation at 37 degrees C. The effect of GM-CSF was maximal using a concentration of 1 nM. Enhancement of the leukotriene synthesis stimulated by A23187 was only observed when the cells were stimulated by the ionophore for periods of 3 minutes or less. In contrast, the enhancing effect of GM-CSF was still apparent when cells were exposed to fMet-Leu-Phe for as long as 15 minutes. Furthermore, the enhancing effect of GM-CSF was ablated when neutrophils were stimulated with A23187 and exogenous arachidonic acid. However, co-addition of exogenous arachidonic acid with fMet-Leu-Phe did not entirely mask the effect of GM-CSF. Possible mechanisms of action of GM-CSF are discussed.  相似文献   

8.
We have described in det ail the secretory activity of leukotriene B4 toward rabbit neutrophils. Leukotriene B4 rapidly and vigorously degranulates rabbit neutrophils. This activity is stereospecific, cytochalasin B-dependent, and is enhanced by extracellular calcium. Pretreatment with leukotriene B4 deactivates rabbit neutrophils, i.e., cells so treated do not respond to stimulation by an additional bolus of leukotriene B4. In addition, the secretory activity of leukotriene B4 is sharply dependent on the simultaneous presence of cytochalasin B. Rabbit neutrophils therefore exhibit the previously described desensitization to the effect of cytochalasin B. In these and other discussed respects the characteristics of the leukotriene B4-induced degranulation of rabbit neutrophils are strikingly similar to those of the chemotactic factors. These results support the hypothesis that leukotriene B4 mediates, at least in part, the secretory, and possibly other, activities of chemotactic factors.  相似文献   

9.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors.  相似文献   

10.
Mouse myeloid leukemia cells, M1, were induced to differentiate into phagocytes by treatment with ascofuranone (AF). AF also induced differentiation of human promyelocytic leukemia HL60 cells and human erythroid leukemia K562 cells into granulocytes and erythrocytes, as detected by nitroblue tetrazolium reducing activity and benzidine staining, respectively.

The antibiotic enhanced acetate incorporation of K562 cells. The increase was not observed with the cells of HL60 and two human B lymphoma lines, Daudi and Raji. The increase was diminished by the addition of a glycolysis inhibitor, deoxyglucose. Inhibitors of respiration, antimycin and sodium azide, also enhanced acetate incorporation of K562 cells specifically, which was diminished by the addition of deoxyglucose. Furthermore, antimycin induced differentiation of K562 and HL60 cells. These results suggest a possible relationship between cell differentiation and inhibition of respiration.  相似文献   

11.
The modulatory influences of phorbol esters on the functional responsiveness of human peripheral blood neutrophils have been investigated. These studies focused on measurements of the levels of cytoplasmic free calcium and of tyrosine phosphorylation as well as on their ability to mount an oxidative response. Short incubation times (< 1 min) with low concentrations of phorbol esters (5-50 nM) were shown to enhance the above indices of neutrophil responsiveness to chemotactic factors such as fMet-Leu-Phe and leukotriene B4. On the other hand, a time- and concentration-dependent inhibition of calcium mobilization and superoxide production was also observed. The effects of the phorbol esters were stereo-specific and were antagonized by a novel protein kinase C inhibitor (RO 318220) but were not affected by the oxidative burst inhibitor diphenyleneiodonium. Pre-incubation of the cells with phorbol 12,13-dibutyrate (PDBu) altered in a concentration-dependent manner the tyrosine phosphorylation pattern stimulated by fMet-Leu-Phe. In addition, the tyrosine kinase inhibitor erbstatin inhibited the priming of the mobilization of calcium induced by PDBu. These data demonstrate the rapidity of the effects of the activation of protein kinase C, their potential to modulate positively the early events of the excitation-response coupling sequence and the complexity of the functional interrelationships among the various cellular activation pathways available to human neutrophils and other non-muscle cells.  相似文献   

12.
Insulin and insulinlike growth factors I and II (IGF-I and IGF-II) influence mesodermal cell proliferation and differentiation. As multiple growth factors are involved in hemopoietic cell proliferation and differentiation, we assessed the receptor binding and mitogenic effects of these peptides on a panel of mesodermally derived human myeloid leukemic cell lines. The promyelocytic cell line HL60 had the highest level of specific binding for these 125I-labeled ligands, with lower binding to the less differentiated myeloblast cell line KG1 and undifferentiated blast variants of these cell lines (HL60blast, KG1a). Insulin binding affinity and receptor numbers were reduced significantly by chemically induced granulocytic differentiation of HL60 cells and was unchanged following induced monocytic differentiation. No substantial alteration in IGF-I or -II binding occurred with induced HL60 cell differentiation. Insulin and IGF-I demonstrated cross competition for receptor binding and down-regulated their homologous receptors without detectable cross modulation of the heterologous receptors on HL60 cells. IGF-I and insulin increased HL60 cell proliferation, as assessed by 3H-thymidine uptake, IGF-I greater than insulin. IGF-I binding and mitogenic effects were blocked by the monoclonal anti-IGF-I receptor antibody IR3, indicating that IGF-I-induced proliferative effects were mediated via its homologous receptor. In contrast, insulin binding and mitogenesis displayed blocking by both anti-IGI-I and anti-insulin receptor antibodies, indicating mediation of its activity through both receptors. These data demonstrate specific binding and mitogenic interactions between insulin, IGFs, and hemopoietic cells which are associated with their state of differentiation.  相似文献   

13.
14.
Propionic acid-induced calcium mobilization in human neutrophils   总被引:1,自引:0,他引:1  
The ability of propionic acid to elicit an increase in the level of cytoplasmic free calcium in human neutrophils was examined in detail. Propionic acid induced a rapid and dose-dependent mobilization of calcium that relied on both internal and external sources of calcium. The effects of propionic acid on the mobilization of calcium were inhibited by pertussis toxin, but not cholera toxin, implicating a guanine nucleotide binding protein. Furthermore, preincubation of the neutrophils with phorbol 12-myristate 13-acetate resulted in a decreased mobilization of calcium. This inhibitory activity of phorbol myristate acetate was antagonized by the protein kinase C inhibitor H-7. Preincubation of the cells with the synthetic chemotactic factor fMet-Leu-Phe caused a reduction in the magnitude of the calcium transient elicited by propionic acid. However, the calcium response to propionic acid was not affected by antagonists of fMet-Leu-Phe and platelet-activating factor binding or by an inhibitor of leukotriene synthesis. Propionic acid did not elicit a mobilization of calcium in monocytes, platelets, lymphocytes, or undifferentiated HL-60 cells. However, the treatment of the HL-60 cells with dimethylsulfoxide resulted in the appearance of a calcium response to propionic acid. The potential physiological significance of these findings are discussed.  相似文献   

15.
The addition of low concentrations (less than 10(-7) M) of the calcium ionophore A23187 to rabbit neutrophils releases the intracellular pool of calcium previously shown in radioactive steady-state and chlortetracycline fluorescence studies to be mobilized by chemotactic factors. A23187 at these concentrations elicits no functional responses from these cells. However, A23187, added before chemotactic factors such as fMet-Leu-Phe and leukotriene B4, inhibits the ability of the latter stimuli to induce, in the presence of cytochalasin B, an exocytotic release of the neutrophil's cytoplasmic granules. These results imply that the chemotactic-factor-induced release of intracellular calcium is a necessary event for the optimal activation of the neutrophils. Phorbol ester-induced neutrophil degranulation on the other hand is unaffected by exposure to A23187, thereby completely dissociating its mechanism of action from rises in cytoplasmic free calcium.  相似文献   

16.
17.
18.
Cultured myeloid leukemia cells display transferrin receptors but decrease receptor display after differentiation induction or accumulation of intracellular iron. To determine whether regulation of transferrin receptors and ferritin were linked under these disparate conditions, serum-free and fetal bovine serum (FBS) cultures of HL60 promyelocytic leukemia cells were used to investigate relationships between transferrin receptor display and intracellular ferritin. Using 125I-transferrin binding and immunofluorescence staining for transferrin receptors, HL60 cells cultured in serum-free, transferrin-free medium expressed fewer transferrin receptors and contained increased ferritin when compared to cells cultured with FBS or transferrin supplemented, serum-free medium. When placed in medium containing transferrin, cells previously grown in transferrin-free medium rapidly re-expressed transferrin receptors and decreased their ferritin content. HL60 cells induced to differentiate into granulocytes or macrophages also decreased transferrin receptor display and increased their ferritin content. Transferrin receptor display and ferritin content in both proliferating and differentiating myeloid leukemia cells are inversely related and their regulation is closely linked. Regulation of transferrin receptor display and ferritin synthesis may be important events regulating myeloid cell growth and differentiation.  相似文献   

19.
Cathepsin B synthesis by the human HL60 promyelocyte cell line was investigated by immunohistochemistry and by the assay of the enzyme in cell lysates using a fluorimetric substrate. HL60 cells were shown to produce cathepsin B in response to treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). Intracellular levels of cathepsin B and immunohistochemical staining of the enzyme were related to time in culture with increasing concentrations of TPA from 1 nmol/1 to 8.0 nmol/1. Synthesis of cathepsin B was associated with TPA-induced phagocytic activity of cells in culture, expression of alpha-naphthyl acetate esterase and reduced cell division. Cathepsin B production was, therefore, related to differentiation of the HL60 promyelocytes into mature macrophage-like cells. Cathepsin B activity in HL60 cell lysates was significantly increased by incubation of the cells with 10 micrograms/ml endotoxin (lipopolysaccharide) from Escherichia coli, but not carrageenan. The production of cathepsin B by TPA-induced HL60 cells was significantly reduced by 0.25 mumol/1 dexamethasone and the non-steroidal anti-inflammatory compound 4-(6-methoxy-2-naphthyl)-butan-2-one but not by indomethacin. The HL60 promyelocytic cell line is a useful model for the study of factors affecting proteinase synthesis by human mononuclear phagocytes.  相似文献   

20.
5-Hydroxyeicosatetraenoate (5-HETE), like leukotriene B4 and platelet-activating factor, stimulated human polymorphonuclear neutrophils to mobilize intracellular calcium. The three compounds acted through mechanisms that were inhibited by pertussis toxin, cholera toxin, and PMA. Each agonist, furthermore, desensitized (or down-regulated) the neutrophil's calcium mobilization response to a second challenge with the same agonist. However, 5-HETE and leukotriene B4 had little or no activity in cross-desensitizing neutrophil responses to each other or to platelet-activating factor. Furthermore, 5-HETE interfered minimally or not at all with the binding of radiolabeled leukotriene B4 and platelet-activating factor to their respective receptors on neutrophils. Thus, 5-HETE mobilizes neutrophil calcium by a mechanism different from those used by leukotriene B4 and platelet-activating factor. This mechanism appears to involve specific 5-HETE receptors that couple to pertussis toxin-inhibitable, GTP-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号