首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The minor coat protein pIII at one end of the filamentous bacteriophage fd, mediates the infection of Escherichia coli cells displaying an F-pilus. pIII has three domains (D1, D2 and D3), terminating with a short hydrophobic segment at the C-terminal end. Domain D2 binds to the tip of F-pilus, which is followed by retraction of the pilus and penetration of the E. coli cell membrane, the latter involving an interaction between domain D1 and the TolA protein in the membrane. Surface residues on the D2 domain of pIII were replaced systematically with alanine. Mutant virions were screened for D2-pilus interaction in vivo by measuring the release of infectious virions from E. coli F(+) cells infected with the mutants. A competitive ELISA was developed to measure in vitro the ability of mutant phages to bind to purified pili. This allowed the identification of amino acid residues involved in binding to F and to EDP208 pili. These residues were found to cluster on the outer rim of the 3D structure of the D2 domain, unexpectedly identifying this as the F-pilus binding region on the pIII protein.  相似文献   

2.
Filamentous bacteriophage assemble at the host membrane in a non-lytic process; the gene-3 minor coat protein (P3) is required for release from the membrane and subsequently, for recognition and infection of a new host. P3 contains at least three distinct domains: two N-terminal domains that mediate host recognition and infection, and a C-terminal domain (P3-C) that is required for release from the host cell following phage assembly and contributes to the structural stability of the phage particle. A comprehensive mutational analysis of the 150 residue P3-C revealed that only 24 side-chains, located within the last 70 residues of sequence, were necessary for efficient incorporation into a wild-type coat. The results reveal that the requirements for the assembly of P3 into the phage particle are quite lax and involve only a few key side-chains. These findings shed light on the functional and structural requirements for filamentous phage assembly, and they may provide guidelines for the engineering of improved coat proteins as scaffolds for phage display technology.  相似文献   

3.
The atomic resolution structure of Pf1 coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles in solution is compared to the structures previously determined by X-ray fiber and neutron diffraction, the structure of its membrane-bound form, and the structure of fd coat protein. These structural comparisons provide insights into several biological properties, differences between class I and class II filamentous bacteriophages, and the assembly process. The six N-terminal amino acid residues adopt an unusual "double hook" conformation on the outside of the bacteriophage particle. The solid-state NMR results indicate that at 30 degrees C, some of the coat protein subunits assume a single, fully structured conformation, and some have a few mobile residues that provide a break between two helical segments, in agreement with structural models from X-ray fiber and neutron diffraction, respectively. The atomic resolution structure determined by solid-state NMR for residues 7-14 and 18-46, which excludes the N-terminal double hook and the break between the helical segments, but encompasses more than 80% of the backbone including the distinct kink at residue 29, agrees with that determined by X-ray fiber diffraction with an RMSD value of 2.0 A. The symmetry and distance constraints determined by X-ray fiber and neutron diffraction enable the construction of an accurate model of the bacteriophage particle from the coordinates of the coat protein monomers.  相似文献   

4.
The M13 filamentous bacteriophage coat is a symmetric array of several thousand alpha-helical major coat proteins (P8) that surround the DNA core. P8 molecules initially reside in the host membrane and subsequently transition into their role as coat proteins during the phage assembly process. A comprehensive mutational analysis of the 50-residue P8 sequence revealed that only a small subset of the side-chains were necessary for efficient incorporation into a wild-type (wt) coat. In the three-dimensional structure of P8, these side-chains cluster into three functional epitopes: a hydrophobic epitope located near the N terminus and two epitopes (one hydrophobic and the other basic) located near the C terminus on opposite faces of the helix. The results support a model for assembly in which the incorporation of P8 is mediated by intermolecular interactions involving these functional epitopes. In this model, the N-terminal hydrophobic epitope docks with P8 molecules already assembled into the phage particle in the periplasm, and the basic epitope interacts with the acidic DNA backbone in the cytoplasm. These interactions could facilitate the transition of P8 from the membrane into the assembling phage, and the incorporation of a single P8 would be completed by the docking of additional P8 molecules with the second hydrophobic epitope at the C terminus. We constructed a minimized P8 that contained only nine non-Ala side-chains yet retained all three functional epitopes. The minimized P8 assembled into the wt coat almost as efficiently as wt P8, thus defining the minimum requirements for protein incorporation into the filamentous phage coat. The results suggest possible mechanisms of natural viral evolution and establish guidelines for the artificial evolution of improved coat proteins for phage display technology.  相似文献   

5.
The filamentous bacteriophage Pf1 undergoes a reversible temperature-dependent transition that is also influenced by salt concentrations. This structural responsiveness may be a manifestation of the important biological property of flexibility, which is necessary for long, thin filamentous assemblies as a protection against shear forces. To investigate structural changes in the major coat protein, one- and two-dimensional solid-state NMR spectra of concentrated solutions of Pf1 bacteriophage were acquired, and the structure of the coat protein determined at 0 degrees C was compared with the structure previously determined at 30 degrees C. Despite dramatic differences in the NMR spectra, the overall change in the coat protein structure is small. Changes in the orientation of the C-terminal helical segment and the conformation of the first five residues at the N-terminus are apparent. These results are consistent with prior studies by X-ray fiber diffraction and other biophysical methods.  相似文献   

6.
Complications of chemotherapy, such as appearance of multidrug resistance, have persuaded researchers to consider phage therapy as a new method to combat bacterial infections. In vitro experiments were performed to assess the therapeutic value of genetically modified phages for controlling gastrointestinal Escherichia coli O157:H7 cells in Luria–Bertani (LB) media and contaminated cow milk. We constructed a modified nonreplicating M13-derived phage expressing a lethal catabolite gene activator protein (CAP) that is a Glu181Gln mutant of CAP. The modified phagemid was propagated in the lethal CAP-resistant strain XA3DII. Time–kill assay experiments showed a considerable reduction in the number of surviving bacteria in both LB media and contaminated cow milk. Our further study using other test strains demonstrated that the host range of lethal phage is limited to E. coli strains that produce pili. This study provides a possible strategy for the exploitation of genetically engineered nonlytic phages as bactericidal agents by minimizing the risk of release of progeny phages and endotoxins into the environment. The phage was engineered to remain lethal to its bacterial target, but incapable of replicating therein. Furthermore, the addition of an inducer to express the lethal protein is not required.  相似文献   

7.
Abstract Bacteriophage P1 encodes the site-specific recombinase Cin which promotes inversion of the C segment, thus controlling the P1 host range. Cin can also mediate inefficient inversion between the normal crossover site cixL and a quasi-crossover site cixQ 1 in inverted orientation. Inversion between cixL and cixQ 1 occurs more frequently in a short period of time after transformation with a plasmid carrying the cin gene, cixL and cixQ 1 than in an established transformant of the plasmid. This is also the case for Cin-mediated deletion on a plasmid containing the cin gene and directly repeated cix sites.  相似文献   

8.
9.
Bacteriophage T4 has an efficient mechanism for injecting the host Escherichiacoli cell with genomic DNA. Its gene product 5 (gp5) has a needle-like structure attached to the end of a tube through which the DNA passes on its way out of the head and into the host. The gp5 needle punctures the outer cell membrane and then digests the peptidoglycan cell wall in the periplasmic space. gp5 is normally post-translationally cleaved between residues 351 and 352. The function of this process in controlling the lysozyme activity of gp5 has now been investigated. When gp5 is over-expressed in E.coli, two mutants (S351H and S351A) showed a reduction of cleavage products and five other mutants (S351L, S351K, S351Y, S351Q, and S351T) showed no cleavage. Furthermore, in a complementation assay at 20 degrees C, the mutants that had no cleavage of gp5 produced a reduced number of plaques compared to wild-type T4. The crystal structure of the non-cleavage phenotype mutant of gp5, S351L, complexed with gene product 27, showed that the 18 residues in the vicinity of the potential cleavage site (disordered in the wild-type structure) had visible electron density. The polypeptide around the potential cleavage site is exposed, thus allowing access for an E.coli protease. The lysozyme activity is inhibited in the wild-type structure by a loop from the adjacent gp5 monomer that binds into the substrate-binding site. The same inhibition is apparent in the mutant structure, showing that the lysozyme is inhibited before gp5 is cleaved and, presumably, the lysozyme is activated only after gp5 has penetrated the outer membrane.  相似文献   

10.
A method has been developed to select proteins that are thermodynamically destabilized yet still folded and functional. The DNA encoding the B1 IgG-binding domain from Group G Streptococcus (Strp G) has been fused to gene III of bacteriophage M13. The resulting fusion protein is displayed on the surface of the phage thus enabling the phage to bind to IgG molecules. In addition, these phage exhibit a small plaque phenotype that is reversed by mutations that destabilize the Strp G domain. By selecting phage with large plaque morphology that retain their IgG-binding function, it is possible to identify mutants that are folded but destabilized compared with wild-type Strp G. Such mutants can be divided into three general categories: (1) those that disrupt packing of hydrophobic side chains in the protein interior; (2) those that destabilize secondary structure; and (3) those that alter specific hydrogen bonds involving amino acid side chains. A number of the mutants have been physically characterized by circular dichroism and nuclear magnetic resonance and have been shown to have structures similar to wild-type Strp G but stabilities that were decreased by 2–5 kcal/mol. © 1995 Wiley-Liss, Inc.  相似文献   

11.
The NANP repeating sequence of the circumsporozoite protein of Plasmodium falciparum was displayed on the surface of fd filamentous bacteriophage as a 12-residue insert (NANP)(3) in the N-terminal region of the major coat protein (pVIII). The structure of the epitope determined by multidimensional solution NMR spectroscopy of the modified pVIII protein in lipid micelles was shown to be a twofold repeat of an extended and non-hydrogen-bonded loop based on the sequence NPNA, demonstrating that the repeating sequence is NPNA, not NANP. Further, high resolution solid-state NMR spectra of intact hybrid virions containing the modified pVIII proteins demonstrate that the peptides displayed on the surface of the virion adopt a single, stable conformation; this is consistent with their pronounced immunogenicity as well as their ability to mimic the antigenicity of their native parent proteins.  相似文献   

12.
AIMS: Defence mechanisms of the corynebacterial strains against corynephage BFK 20, which causes lysis of Brevibacterium flavum CCM 251. METHODS AND RESULTS: We tested adsorption of the phage BFK 20 to the corynebacterial cell surface. We observed strong adsorption ranging from ca 79 to 93% on the cells of B. flavum ATCC strains, but only ca 76% for B. flavum CCM 251. Minor adsorption for Brevibacterium lactofermentum BLOB (ca 13%) and no adsorption for Corynebacterium glutamicum RM3 were determined. BFK 20 infection had no significant effect on growth and viability of C. glutamicum and B. lactofermentum, but significantly influenced growth and viability of B. flavum ATCC 21127, 21128 and 21474. Cell growth stopped in short time after infection but with no lysis. Brevibacterium flavum CCM 251 cell growth was arrested too and lysis occurred. The Southern hybridization confirmed the presence of significant amount of BFK 20 DNA in samples from B. flavum CCM 251 and B. flavum ATCC strains after BFK 20 infection. Only weak hybridization signal was detected for DNA from infected cells of B. lactofermentum BLOB and no signal for C. glutamicum RM3. CONCLUSIONS: Based on the above results we suggest presence of a mechanism leading to abortive infection in B. flavum ATCC 21127, 21128 and 21474. In B. lactofermentum BLOB and C. glutamicum RM3 the adsorption barrier is more likely. SIGNIFICANCE AND IMPACT OF THE STUDY: This study increases the knowledge on defence mechanisms of corynebacteria against bacteriophages.  相似文献   

13.
噬菌体是能感染细菌的病毒。为了抵抗噬菌体的感染,细菌进化出多种抵抗噬菌体感染的机制,这些机制的阐析极大地促进了基因编辑领域的发展,同时也为噬菌体治疗的开展奠定了基础。本文就细菌针对噬菌体感染的各个环节所进行的抵抗及其分子机制进行了简要综述,同时讨论了这些防御系统的存在对细菌自身的影响,分析了当前细菌耐受噬菌体机制研究存在的局限性,并对未来研究进行了展望。  相似文献   

14.
信号传导途径使细胞能够对复杂的外界环境刺激及时做出反应,从而针对不同病原菌感染产生生物学效应。丝裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)及其下游靶标作为将环境输入转化为大量细胞程序的最重要信号模块之一,在哺乳动物细胞中最为常见,几乎参与绝大多数细胞的生理和病理反应。MAPK响应各种环境压力刺激,包括细菌感染和炎症,以此调节宿主的免疫反应。近期研究表明,病原菌在感染期间会释放特定效应物或毒素来劫持MAPK通路,劫持方式分为两种,一种是通过降解关键蛋白影响信号传导,更主要的一种是影响宿主细胞翻译后修饰,如磷酸化、泛素化等来调节诸多细胞进程。本文讨论了MAPK在先天免疫中的调节激活过程,并研究病原细菌如何进化出复杂机制来操纵MAPK激活以增强自身感染,以及作为新型抗病原感染和肿瘤免疫治疗靶点的潜在作用。  相似文献   

15.
Filamentous bacteriophage (Inovirus) is a simple and well-characterized model system. The phage particle, or virion, is about 60 angstroms in diameter and several thousand angstrom units long. The virions are assembled at the bacterial membrane as they extrude out of the host without killing it, an example of specific transport of nucleoprotein assemblages across membranes. The Ff group (fd, f1 and M13) has been especially widely studied. Models of virion assembly have been proposed based on a molecular model of the fd virion derived by X-ray fibre diffraction. A somewhat different model of the fd virion using solid-state NMR data has been proposed, not consistent with these models of assembly nor with the X-ray diffraction data. Here we show that reinterpreted NMR data are also consistent with the model derived from X-ray fibre diffraction studies, and discuss models of virion assembly.  相似文献   

16.
Abstract Some structural characteristics of the Streptomyces phage φC31 were analyzed. A simpler and at least 50 times more efficient method than those previously described for isolating the phage is reported. The phage is naked, showing a polyhedral head 53 nm wide, a long non-contractile tail 100 × 5 nm, a basal plate 15 nm in diameter with at least one pin, and a prominent knot between the head and the tail. Up to 17 polypeptides had been found in the virion. Four of them, of 51, 38.5, 29.5 and 28 kDa, make up around 84% of the total protein of the particle.  相似文献   

17.
It has been demonstrated that the third component of complement (C3)(1) and its peptides increase normal and tumour cell proliferation. However, the signal cascade responsible for this phenomenon is still unknown. In this study, we elucidate some of the mechanisms involved in the signalling of C3 stimulation of cell proliferation. We have first investigated the in and out traffic of C3 peptides, then we have identified the subcellular localisation of internalised C3 and, finally, we have explored the role of protein phosphorylation in C3 traffic and in the proliferation of the Lewis lung carcinoma (3LL) cells. Our results indicate that traffic of C3 is not dependent on cytoskeletal integrity and requires protein kinase C-dependent phosphorylation. In addition, proliferation of 3LL cells stimulated by C3 depends on both C3 internalisation and protein-kinase C phosphorylation.  相似文献   

18.
A peptide was fused to the C terminus of the M13 bacteriophage major coat protein (P8), and libraries of P8 mutants were screened to select for variants that displayed the peptide with high efficiency. Over 600 variants were sequenced to compile a comprehensive database of P8 sequence diversity compatible with assembly into the wild-type phage coat. The database reveals that, while the alpha-helical P8 molecule was highly tolerant to mutations, certain functional epitopes were required for efficient incorporation. Three hydrophobic epitopes were located approximately equidistantly along the length of the alpha-helix. In addition, a positively charged epitope was required directly opposite the most C-terminal hydrophobic epitope and on the same side as the other two epitopes. Both ends of the protein were highly tolerant to mutations, consistent with the use of P8 as a scaffold for both N and C-terminal phage display. Further rounds of selection were used to enrich for P8 variants that supported higher levels of C-terminal peptide display. The largest improvements in display resulted from mutations around the junction between P8 and the C-terminal linker, and additional mutations in the N-terminal region were selected for further improvements in display. The best P8 variants improved C-terminal display more than 100-fold relative to the wild-type, and these variants could support the simultaneous display of N and C-terminal fusions. These finding provide information on the requirements for filamentous phage coat assembly, and provide improved scaffolds for phage display technology.  相似文献   

19.
Disulfide bonds provide major contributions to the conformational stability of proteins, and their cleavage often leads to unfolding. The gene-3-protein of the filamentous phage fd contains two disulfides in its N1 domain and one in its N2 domain, and these three disulfide bonds are essential for the stability of this protein. Here, we employed in vitro evolution to generate a disulfide-free variant of the N1-N2 protein with a high conformational stability. The gene-3-protein is essential for the phage infectivity, and we exploited this requirement for a proteolytic selection of stabilized protein variants from phage libraries. First, optimal replacements for individual disulfide bonds were identified in libraries, in which the corresponding cysteine codons were randomized. Then stabilizing amino acid replacements at non-cysteine positions were selected from libraries that were created by error-prone PCR. This stepwise procedure led to variants of N1-N2 that are devoid of all three disulfide bonds but stable and functional. The best variant without disulfide bonds showed a much higher conformational stability than the disulfide-containing wild-type form of the gene-3-protein. Despite the loss of all three disulfide bonds, the midpoints of the thermal transitions were increased from 48.5 degrees C to 67.0 degrees C for the N2 domain and from 60.0 degrees C to 78.7 degrees C for the N1 domain. The major loss in conformational stability caused by the removal of the disulfides was thus over-compensated by strongly improved non-covalent interactions. The stabilized variants were less infectious than the wild-type protein, probably because the domain mobility was reduced. Only a small fraction of the sequence space could be accessed by using libraries created by error-prone PCR, but still many strongly stabilized variants could be identified. This is encouraging and indicates that proteins can be stabilized by mutations in many different ways.  相似文献   

20.
Kar3 kinesins are microtubule (MT) minus‐end‐directed motors with pleiotropic functions in mitotic spindle formation and nuclear movement in budding and fission yeasts. A Kar3‐like kinesin is also expressed by the filamentous fungus Ashbya gossypi, which exhibits different nuclear movement challenges from its yeast relatives. Presented here is a 2.35 Å crystal structure and enzymatic analysis of the AgKar3 motor domain (AgKar3MD). Compared to the previously published Saccharomyces cerevisiae Kar3MD structure (ScKar3MD), AgKar3MD displays differences in the conformation of some of its nucleotide‐binding motifs and peripheral elements. Unlike ScKar3MD, the salt bridge between Switch I and Switch II in AgKar3MD is broken. Most of the Switch I, and the adjoining region of helix α3, are also disordered instead of bending into the active site cleft as is observed in ScKar3MD. These aspects of AgKar3MD are highly reminiscent of the ScKar3 R598A mutant that disrupts the Switch I–Switch II salt bridge and impairs MT‐stimulated ATPase activity of the motor. Subtle differences in the disposition of secondary structure elements in the small lobe (β1a, β1b, and β1c) at the edge of the MD are also apparent even though it contains approximately the same number of residues as ScKar3. These differences may reflect the unique enzymatic properties we measured for this motor, which include a lower MT‐stimulated ATPase rate relative to ScKar3, or they could relate to its interactions with different regulatory companion proteins than its budding yeast counterpart. Proteins 2011;. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号