首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syngenta is seeking commercial registration for VipCot cotton, a pyramided transgenic cotton trait that expresses two insecticidal proteins derived from Bacillus thuringiensis Vip3A and Cry1Ab. Both proteins are highly effective against two key cotton pests, Helicoverpa zea cotton bollworm; and Heliothis virescens, tobacco budworm. To investigate the role of VipCot cotton in delaying the development of resistance in these pests to transgenic Bt traits, Syngenta has performed studies to determine the dose of proteins expressed in VipCot and evaluate the potential for cross-resistance between the component proteins. Following United States Environmental Protection Agency (US EPA) high dose methods 1 and 4, VipCot was shown to express a high dose of proteins for H. zea and H. virescens. VipCot was also confirmed to express a high dose of proteins for H. zea through US EPA Method 5. Additionally, all the data collected to date verify a lack of cross-resistance between Vip3A and Cry proteins. These two key pieces of information indicate that VipCot cotton should be very durable under the currently mandated high dose plus refuge insect resistance management strategy.  相似文献   

2.
Laboratory, greenhouse and field studies were conducted to characterize the insecticidal properties of genetically altered forms of Autographa californica (Speyer) nucleopolyhedrovirus (AcNPV) and Helicoverpa zea (Boddie) NPV (HzNPV) against selected heliothine species. The altered viruses each contained a chimeric 0.8-kb fragment encoding the insect-specific, sodium channel neurotoxin from the Algerian scorpion Androctonus australis Hector (AaIT, hence recombinant viruses designated Ac-AaIT and Hz-AaIT). Based on LD50 values, results from diet-overlay bioassays showed Ac-AaIT and Hz-AaIT to be equally virulent against larval tobacco budworm, Heliothis virescens (F.), but Hz-AaIT averaged 1,335-fold greater bioactivity than Ac-AaIT against larval cotton bollworm, Helicoverpa zea (Boddie). Hz-AaIT killed larvae of both heliothine species at rates significantly faster than those imparted by HzNPV (viral LT50 values averaged 2.5 and 5.6 d, respectively). In greenhouse studies, foliar sprays of Ac-AaIT and Hz-AaIT were equally effective in controlling H. virescens on cotton; however, Hz-AaIT provided control of H. zea on cotton at a level superior to that of Ac-AaIT. For example, after three weekly sessions of foliar application and H. zea artificial infestation, cotton treated with Ac-AaIT or Hz-AaIT at 10 x 10(11) occulsion bodies (OB)/ha averaged 2.5 and 16.2 nondamaged flower buds per plant, respectively. Another greenhouse study conducted against heliothine species on cotton showed that the quicker killing speed exhibited by Hz-AaIT led to improved plant protection versus HzNPV. Finally, results from three field trials demonstrated that Hz-AaIT at 5-12 x 10(11) OB/ha provided control of the heliothine complex in cotton at levels slightly better than Bacillus thuringiensis, equal to the macrolide, spinosad, and only slightly less than that of selected pyrethroid and carbamate insecticides. Overall, results from these studies indicate that, because of host range differences between the two wild-type viruses, HzNPV is the better vectoring agent (versus AcNPV) for designing recombinant clones as insecticides targeted at the multi-species heliothine complex. Further, these studies suggest that if appropriately tailored for the pest complex, recombinant NPVs may be very effective, insect-specific approaches to managing pests in many cropping scenarios. Possible Hz-AaIT deployment strategies for control of heliothine species on conventional and transgenic cotton varieties are discussed.  相似文献   

3.
One susceptible and three Cry1Ac-resistant strains of tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae), were used in laboratory studies to determine the level of cross-resistance between the Bacillus thuringiensis (Berliner) toxins Cry1Ac and Vip3A by using concentration-mortality and leaf tissue experiments. Concentration-mortality data demonstrated that the three Cry1Ac-resistant H. virescens strains, YHD2, KCBhyb, and CxC, were at least 215- to 316-fold resistant to Cry1Ac compared with the susceptible strain, YDK. Results from Vip3A concentration-mortality tests indicated that mortality was similar among all four H. virescens strains. Relative larval growth on Cry1Ac reflected concentration-mortality test results, because YHD2 larval growth was mostly unaffected by the Cry1Ac concentrations tested. Growth ratios for KCBhyb and CXC indicated that they had a more moderate level of resistance to Cry1Ac than did YHD2. Relative larval growth on Vip3A was highly variable at lower concentrations, but it was more consistent on concentrations of Vip3A above 25 microg/ml. Differences in larval growth among strains on Vip3A were not as pronounced as seen in Cry1Ac experiments. Mortality and larval growth also was assessed in leaf tissue bioassays in which YDK, CxC, and KCBhyb neonates were placed onto leaf disks from non-Bt and Bt cotton, Gossypium hirsutum L., for 5 d. Three Bt lines were used in an initial bioassay and consisted of two Vip3A-containing lines, COT203 and COT102, and a Cry1Ac-producing line. Mortality of KCBhyb and CXC was lower than that of YDK larvae in the presence of leaf tissue from the Cry1Ac-producing line. Additionally, increased larval growth and leaf tissue consumption on Cry1Ac-containing leaf disks was observed for KCBhyb and CXC. Mortality and larval weights were similar among strains when larvae were fed leaf tissue of either non-Bt, COT203, or COT102. A subsequent leaf tissue bioassay was conducted that evaluated four cotton lines: non-Bt, Cry1Ab-expressing, Vip3A-expressing, and pyramided-toxin plants that produced both Cry1Ab and Vip3A. Mortality levels were similar among strains when fed non-Bt, Vip3A-expressing, or pyramided-toxin leaf tissues. Mortality was higher for YDK than for KCBhyb or CXC on Cry1Ab-expressing leaf tissues. No differences in larval weights were observed among strains for any genotype tested. Results of these experiments demonstrate that cross-resistance is nonexistent between CrylAc and Vip3A in H. virescens. Thus, the introduction of Vip3A-producing lines could delay Cry1Ac-resistance evolution in H. virescens, if these lines gain a significant share of the market.  相似文献   

4.
The binding properties of Vip3A, a new family of Bacillus thuringiensis insecticidal toxins, have been examined in the major cotton pests, Heliothis virescens and Helicoverpa zea. Vip3A bound specifically to brush border membrane vesicles (BBMV) prepared from both insect larval midguts. In order to examine the cross-resistance potential of Vip3A to the commercially available Cry1Ac and Cry2Ab2 toxins, the membrane binding site relationship among these toxins was investigated. Competition binding assays demonstrated that Vip3A does not inhibit the binding of either Cry1Ac or Cry2Ab2 and vice versa. BBMV protein blotting experiments showed that Vip3A does not bind to the known Cry1Ac receptors. These distinct binding properties and the unique protein sequence of Vip3A support its use as a novel insecticidal agent. This study indicates a very low cross-resistance potential between Vip3A and currently deployed Cry toxins and hence supports its use in an effective resistance management strategy in cotton.  相似文献   

5.
Cry1Ac protoxin (the active insecticidal toxin in both Bollgard and Bollgard II cotton [Gossypium hirsutum L.]), and Cry2Ab2 toxin (the second insecticidal toxin in Bollgard II cotton) were bioassayed against five of the primary lepidopteran pests of cotton by using diet incorporation. Cry1Ac was the most toxic to Heliothis virescens (F.) and Pectinophora gossypiella (Saunders), demonstrated good activity against Helicoverpa zea (Boddie), and had negligible toxicity against Spodoptera exigua (Hübner) and Spodoptera frugiperda (J. E. Smith). Cry2Ab2 was the most toxic to P. gossypiella and least toxic to S. frugiperda. Cry2Ab2 was more toxic to S. exigua and S. frugiperda than Cry1Ac. Of the three insect species most sensitive to both Bacillus thuringiensis (Bt) proteins (including H. zea), P. gossypiella was only three-fold less sensitive to Cry2Ab2 than Cry1Ac, whereas H. virescens was 40-fold less sensitive to Cry2Ab2 compared with CrylAc. Cotton plants expressing Cry1Ac only and both Cry1Ac and Cry2Ab2 proteins were characterized for toxicity against H. zea and S.frugiperda larvae in the laboratory and H. zea larvae in an environmental chamber. In no-choice assays on excised squares from plants of different ages, second instar H. zea larvae were controlled by Cry1Ac/Cry2Ab2 cotton with mortality levels of 90% and greater at 5 d compared with 30-80% mortality for Cry1Ac-only cotton, depending on plant age. Similarly, feeding on leaf discs from Cry1Ac/Cry2Ab2 cotton resulted in mortality of second instars of S.frugiperda ranging from 69 to 93%, whereas exposure to Cry1Ac-only cotton yielded 20-69% mortality, depending on plant age. When cotton blooms were infested in situ in an environmental chamber with neonate H. zea larvae previously fed on synthetic diet for 0, 24, or 48 h, 7-d flower abortion levels for Cry1Ac-only cotton were 15, 41, and 63%, respectively, whereas for Cry1Ac/Cry2Ab2 cotton, flower abortion levels were 0, 0, and 5%, respectively. Cry1Ac and Cry2Ab2 concentrations were measured within various cotton tissues of Cry1Ac-only and Cry1Ac/Cry2Ab2 plants, respectively, by using enzyme-linked immunosorbent assay. Terminal leaves significantly expressed the highest, and large leaves, calyx, and bracts expressed significantly the lowest concentrations of Cry1Ac, respectively. Ovules expressed significantly the highest, and terminal leaves, large leaves, bracts, and calyx expressed significantly (P < 0.05) the lowest concentrations of Cry2Ab2. These results help explain the observed differences between Bollgard and Bollgard II mortality against the primary lepidopteran cotton pests, and they may lead to improved scouting and resistance management practices, and to more effective control of these pests with Bt transgenic crops in the future.  相似文献   

6.
The use of combinations of Bacillus thuringiensis (Bt) toxins with diverse modes of action for insect pest control has been proposed as the most efficient strategy to increase target range and delay the onset of insect resistance. Considering that most cases of cross-resistance to Bt toxins in laboratory-selected insect colonies are due to alteration of common toxin binding sites, independent modes of action can be defined as toxins sharing limited or no binding sites in brush border membrane vesicles (BBMV) prepared from the target insect larvae. In this paper, we report on the specific binding of Cry2Ae toxin to binding sites on BBMV from larvae of the three most commercially relevant heliothine species, Heliothis virescens, Helicoverpa zea, and Helicoverpa armigera. Using chromatographic purification under reducing conditions before labeling, we detected specific binding of radiolabeled Cry2Ae, which allowed us to perform competition assays using Cry1Ab, Cry1Ac, Cry1Fa, Vip3A, Cry2Ae, and Cry2Ab toxins as competitors. In these assays, Cry2Ae binding sites were shared with Cry2Ab but not with the tested Cry1 or Vip3A toxins. Our data support the use of Cry2Ae toxin in combination with Cry1 or Vip3A toxins in strategies to increase target range and delay the onset of heliothine resistance.  相似文献   

7.
An J  Gao Y  Wu K  Gould F  Gao J  Shen Z  Lei C 《Journal of economic entomology》2010,103(6):2169-2173
Transgenic cotton, Gossypium hirsutum L., that expresses the Bacillus thuringiensis (Bt) Cry1Ac toxin, holds great promise in controlling target insect pests. Evolution of resistance by target pests is the primary threat to the continued efficacy of Bt cotton. To thwart pest resistance evolution, a transgenic cotton culitvar that produces two different Bt toxins, cry1Ac and vip3A genes, was proposed as a successor of cry1Ac cotton. This article reports on levels of Vip3Aa tolerance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) populations from the Cry1Ac cotton planting region in China based on bioassays of the F1 generation of isofemale lines. In total, 80 isofemale families of H. armigera from Xiajin county of Shandong Province (an intensive Bt cotton planting area) and 93 families from Anci county of Hebei Province (a multiple-crop system including corn [Zea mays L.] , soybean [Glycine max (L.) Merr.], peanut (Arachis hypogaea L.), and Bt cotton) were screened with a discriminating concentration of both Cry1Ac- and Vip3A-containing diets in 2009. From data on the relative average development rates and percentage of larval weight inhibition of F1 full-sib families tested simultaneously on Cry1Ac and Vip3Aa, results indicate that responses to Cry1Ac and Vip3Aa were not genetically correlated in field population ofH. armigera. This indicates that the threat of cross-resistance between Cry1Ac and Vip3A is low in field populations of H. armigera. Thus, the introduction of Vip3Aa/Cry1Ac-producing lines could delay resistance evolution in H. armigera in Bt cotton planting area of China.  相似文献   

8.
Mahon RJ  Downes SJ  James B 《PloS one》2012,7(6):e39192
Crops engineered to produce insecticidal crystal (Cry) proteins from the soil bacterium Bacillus thuringiensis (Bt) have revolutionised pest control in agriculture. However field-level resistance to Bt has developed in some targets. Utilising novel vegetative insecticidal proteins (Vips), also derived from Bt but genetically distinct from Cry toxins, is a possible solution that biotechnical companies intend to employ. Using data collected over two seasons we determined that, before deployment of Vip-expressing plants in Australia, resistance alleles exist in key targets as polymorphisms at frequencies of 0.027 (n = 273 lines, 95% CI = 0.019-0.038) in H. armigera and 0.008 (n = 248 lines, 0.004-0.015) in H. punctigera. These frequencies are above mutation rates normally encountered. Homozygous resistant neonates survived doses of Vip3A higher than those estimated in field-grown plants. Fortunately the resistance is largely, if not completely, recessive and does not confer resistance to the Bt toxins Cry1Ac or Cry2Ab already deployed in cotton crops. These later characteristics are favourable for resistance management; however the robustness of Vip3A inclusive varieties will depend on resistance frequencies to the Cry toxins when it is released (anticipated 2016) and the efficacy of Vip3A throughout the season. It is appropriate to pre-emptively screen key targets of Bt crops elsewhere, especially those such as H. zea in the USA, which is not only closely related to H. armigera but also will be exposed to Vip in several varieties of cotton and corn.  相似文献   

9.
Intra- and inter-specific effects of cotton, soybean, and clover on the time until death of Helicoverpa zea (Boddie) and Heliothis virescens (F.) larvae lethally infected with H. zea nucleopolyhedrovirus (HzSNPV) were evaluated in the laboratory. In the first test, on second instar only, the time until death of lethally infected larvae of both species differed with the plant tissues (vegetative or reproductive) and plant species. The total viral activity produced per larva in LC(50) units (occluded viral bodies (OBs) per larva/LC(50) in OBs/mm(2) of diet surface) was greater from H. virescens larvae fed vegetative than reproductive tissues of all host plants, but from H. zea virus production was greater only when fed vegetative tissue of soybean. In a second test that compared second and fourth instar H. virescens on cotton, total viral activity from larvae treated in both instars was greater when fed vegetative than reproductive tissues. Results of these tests suggest that the ability of host plants to influence baculovirus disease is more complex than previously believed. When examining the epizootic potential of a baculovirus, more attention must be given to the effects of the host plant on the insect-virus interactions.  相似文献   

10.
Feeding by larvae of Heliothis virescens induces cotton, corn and tobacco plants to release blends of volatile organic compounds that differ in constituent proportions from blends released when Helicoverpa zea larvae feed on the same plant species. The same elicitors (and analogs) of plant biosynthesis and release of volatiles, originally identified in oral secretions of Spodoptera exigua larvae, were also found in oral secretions of H. virescens and H. zea. However, relative amounts of these compounds, particularly N-(17-hydroxylinolenoyl)-L-glutamine (volicitin), 17-hydroxylinolenic acid, and N-linolenoyl-L-glutamine, varied among batches of oral secretions, more so in H. virescens than in H. zea. This variation was due to cleavage of the amide bond of the fatty acid-amino acid conjugates by an enzyme, or enzymes, originating in the midgut. The enzymatic activity in guts of H. virescens was significantly greater than that found in guts of H. zea. Furthermore, H. zea frass contains N-linolenoyl-L-glutamine in more than 0.1% wet weight, while this conjugate comprises only 0.003% wet weight in H. virescens frass. These results indicated that physiological differences between these two species affect the proportions of volicitin and its analogs in the caterpillars. Whether this causes different proportions of volatiles to be released by plants damaged by each caterpillar species is yet to be determined.  相似文献   

11.
The kill times of two viruses infectious to the heliothine pest complex indigenous to Texas cotton have been significantly reduced by expressing a scorpion toxin gene. Autographa californica nucleopolyhedrovirus (NPV) and Helicoverpa zea NPV express the toxin only in permissive lepidopteran hosts. The toxin, however, could indirectly harm members of upper trophic levels that feed upon and parasitize infected larvae producing the toxin. In this study, the effects of recombinant and wild-type viruses on Microplitis croceipes (Cresson) were studied in cotton using Heliothis virescens (F.) (Lepidoptera: Noctuidae) as hosts. Two recombinant viruses, their two wild-type progenitor viruses, and untreated cotton served as the five treatments of study. Larvae were previously parasitized 2 and 4 d before being confined for 72 h to cotton terminals treated with field rates of virus or left untreated. The sexes of adult M. croceipes that emerged from the recovered H. virescens larvae were determined and their head capsule widths were measured. Polymerase chain reaction (PCR) searched their extracts for virus DNA. There were no differences in percentage emergence and sex ratios of parasitoids among recombinant, wild-type, and control treatments. Significantly more wasps emerged from the 4-d cohort, but these wasps were significantly smaller than wasps from the 2-d cohort regardless of treatment. Finally, PCR found only 15-25% of the recovered H. virescens larvae and none of the emergent M. croceipes had detectable levels of viral DNA. Recombinant and wild-type viruses had a similar, minimal impact on emergent wasps, and the probability of virus dispersal via parasitoids is low in the system tested.  相似文献   

12.
We studied how biologically relevant trace metals (i.e., micronutrients) in the hemolymph of larval Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae) changed in response to per os baculovirus infection, larval development, and injection of heat-killed bacteria. Concentrations of hemolymph Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, and Zn were measured using inductively coupled plasma-mass spectrometry. H. virescens larvae exhibited greater fluctuations in hemolymph trace metal levels in response to baculovirus infection and development than did H. zea larvae. H. zea single nucleopolyhedrosis virus infection significantly altered the levels of Cu, Fe, Mg, Mn, Mo, and Zn in fourth instar H. virescens larvae. Conversely, in fifth instar H. virescens and both H. zea instar infections, no metal levels were significantly different between infected and uninfected larvae. In fourth instar H. virescens hemolymph, Cu, Fe, Mo, and Zn increased during development. Cu, Fe, Mg, Mn, Mo, and Zn levels changed significantly during development in fifth instar H. virescens as well as both H. zea instars. Based on this analysis, metals were identified whose levels changed during development in both species and during the immune response of H. virescens larvae.  相似文献   

13.
Genetically modified cotton, Gossypium hirsutum L., cultivars ('Bollgard') that produce crystalline proteins from Bacillus thuringiensis (Berliner) are valuable tools for managing lepidopteran insect pests in the United States. However, high numbers of bollworm, Helicoverpa zea (Boddie), larvae have been observed feeding in white flowers of these cultivars. Fresh tissue bioassays were conducted to investigate bollworm survival on Bollgard and 'Bollgard II' cottons. Bollworm survival was higher on square and flower anthers than on other floral structures on 'Deltapine 5415' (conventional cotton) and 'NuCOTN 33B' (Bollgard). Bollworm survival at 72 h was higher on all floral structures from Deltapine 5415 than on corresponding structures from NuCOTN 33B. ELISA tests indicated that CryIA(c) expression varied among plant parts; however, bollworm survival did not correlate with protein expression levels. Trends in bollworm survival on Bollgard II were similar to those on Bollgard and conventional cotton; however, survival was lower on all structures of Bollgard II than on corresponding structures of Bollgard and conventional cotton. These data support field observations of bollworm injury to white flowers and small bolls and provide a better understanding of larval behavior on Bollgard cotton.  相似文献   

14.
Studies on numerous insect species suggest that male-produced sex pheromones play a role in attracting females; as aphrodisiacs, making females more quiescent; or as a means of inhibiting competing males. Male heliothine moths display abdominal hairpencils during courtship, but the specific effects of the odors released on female behavior have not yet been elucidated. This study investigates the role of male hairpencil compounds in female Heliothis virescens mating behavior. Female H. virescens were exposed to filter paper loaded with hairpencil extracts of male H. virescens, Heliothis subflexa and Helicoverpa zea, and observed for behavioral responses to odors. Single synthetic compounds found in the H. virescens hairpencil blend were also tested. In mating assays between single male and female H. virescens it was found that: (i) antennectomized females mated less frequently than sham-operated females; (ii) females mated less frequently with males whose hairpencils had been surgically removed; (iii) females mated with males with ablated hairpencils if a filter paper loaded with one male equivalent of H. virescens hairpencil extract was presented simultaneously; and (iv) this effect was species-specific, as presentation of H. subflexa or H. zea hairpencil extracts did not restore mate acceptance. This study suggests that odors released by male hairpencils are important in mate acceptance by female H. virescens, and may play a role in mate choice and species isolation.  相似文献   

15.
Helicoverpa zea (Boddie) is an important pest of cotton, Gossypium hirsutum L., for which many economic injury and population models have been developed to predict the impact of injury by this species on cotton yield. A number of these models were developed using results from simulated damage experiments, despite the fact that no studies have demonstrated that simulated damage is comparable to real H. zea damage. Our main objective in this study was to compare the effect on yield of H. zea larvae feeding on cotton fruiting structures at different irrigation levels, larval densities, and cotton physiological ages with damage produced artificially by removing fruiting structures by hand using simulated estimates of H. zea injury. To accomplish this, we used two irrigation levels, each divided into real and simulated damage plots. In real damage plots, H. zea larvae were placed on plants and allowed to feed; whereas in simulated damage plots, fruiting structures were removed by hand using a simulation model of H. zea damage to determine numbers and amounts of fruiting structures to remove. Each of these plots was further divided into one undamaged control plot and nine treatment plots. Each treatment plot was randomly assigned one of three damage times (early, middle, or late season) and one of three H. zea densities. In 1998, we found that only artificial H. zea damage (performed by hand removal of fruiting structures) at the highest density and during the late season decreased yield; whereas real damage caused by H. zea larvae placed on plants, and artificial damage occurring at earlier time periods and lower H. zea densities did not affect yield. In 1999, both real and artificial damage decreased yield at the higher H. zea densities compared with the lowest density, but, as in 1998, this was only true when damage occurred late in the season. The most important finding of this study was that high H. zea densities had no effect on cotton yield unless they occurred late in the season. In particular, this was true for artificial H. zea damage. The second most important finding of this study was that, with the exception of late in the season, our model for simulating H. zea damage to cotton through removal of fruiting structures resulted in similar yields as real H. zea larvae damage to cotton.  相似文献   

16.
Susceptibilities of 82 bollworm, Helicoverpa zea (Boddie), and 44 tobacco budworm, Heliothis virescens (F.) (Lepidoptera: Noctuidae), populations to Cry2Ab2 protein were measured in diet incorporated assays at the University of Arkansas from 2002 to 2005. Resulting data were used to calculate overall (pooled data) estimates of species susceptibility for future benchmarks of resistance. Variabilities among populations also were studied by comparing regressions for individual populations and calculating mean susceptibilities for different subgroups of the colonies studied. Individual lethal concentration (LC50) estimates for nine laboratory, seven laboratory-cross, and 28 field populations of H. virescens varied up to 48-fold when adjusted for the response of the most susceptible laboratory colony studied. Mean susceptibilities of all laboratory, laboratory-cross, or field colonies varied only two-fold. When grouped by host plants, populations collected on tobacco, Nicotiana tabacum (L.), seemed to be less susceptible than those collected on other host plants. Individual LC50 values for 82 laboratory, laboratory-cross and field populations of H. zea varied up to 37-fold. Mean LC50 values of all laboratory, laboratory-cross, or field populations varied only three-fold. Susceptibilities of populations from Bollgard cotton were up to four-fold less than those from Bacillus thuringiensis corn, Zea mays L. Field populations collected during late season were generally less susceptible than those collected early in the season. Across the two species, H. zea was less sensitive to Cry2Ab2 than H. virescens. Both species seem to be less sensitive to Cry2Ab2 than to CrylAc.  相似文献   

17.
Laboratory and field studies were conducted during 1993 and 1994 to quantify interplant movement of Heliothis virescens (F.) larvae in pure and mixed plantings of cotton, Gossypium hirsutum L., with ('Event 531') and without ('Coker 312') the expression of Cry1Ac delta-endotoxin protein of Bacillus thuringiensis Berliner. Field studies were conducted with neonate, 4-, and 7-d-old larvae placed on 3-plant experimental units and observed at 24, 48, 72, and 96 h after inoculation of larvae. Combining larval movement across observations of neonates, 4-, and 7-d-old larvae, an estimated 52% of the larvae on pure plantings of Coker 312 had moved at least 1 plant by the cumulative time required to reach the age of 10 d. More larvae placed on Event 531 cotton moved to an adjacent plant (13% of the neonates had moved at least 1 plant within 24 h) than those placed on Coker 312 (0% of the neonates had moved at least 1 plant within 24 h). When larvae were placed on Event 531 plants, an estimated 82% of the larvae had moved to an adjacent plant by cumulative age of 10 d. Collectively, these data indicate that movement of larvae from plant to plant increases with larval age and occurs more rapidly for larvae placed on Event 531 cotton than on Coker 312. Previous studies have suggested that resistance to B. thuringiensis could develop more rapidly in insects exposed to seed mixtures of plants with and without endotoxin if larvae move between plants and if an external refuge exists. These data provide evidence of larval movement between plants in seed mixtures.  相似文献   

18.
A series of laboratory assays were performed to compare the relative impact of commercial and experimental cultivars of cotton, Gossypium hirsutum (L.), expressing zero, one, or two insecticidal proteins of Bacillus thuringiensis Berliner, on several lepidopteran pests. Assays in which larvae were fed fresh plant tissue indicated that dual-toxin B. thuringiensis (Bt) cultivars, expressing both Cry1Ac and Cry2Ab endotoxins of B. thuringiensis, were more toxic to bollworms, Helicoverpa zea (Boddie), fall armyworms, Spodoptera frugiperda (J. E. Smith), and beet armyworms, Spodoptera exigua (Hubner), than single-toxin cultivars expressing Cry1Ac. Assays in which lyophilized plant tissue was incorporated into artificial diet also indicated improved activity of the dual-toxin Bt cultivar compared with single-toxin plants. Both bollworm and tobacco budworm, Heliothis virescens (F.), growth was reduced by Bt cotton, particularly the dual-toxin cultivar. Although assays with lyophilized tissues were done using largely sublethal doses, bollworm survival was reduced by the dual-toxin cultivar. It appears that this newly developed Bt cotton expressing two toxins will be more effective and have a wider range of activity on these lepidopteran pests.  相似文献   

19.
Feeding behavior of third-instar bollworm, Helicoverpa zea (Boddie), and tobacco budworm, Heliothis virescens (F.), was observed in pure and mixed stands of nontransgenic and transgenic cotton (BTK), Gossypium hirsutum L., expressing an insecticidal protein CryIA(c) from a bacterium, Bacillus thuringiensis Berliner subsp. kurstaki. Five plant stands composed of BTK and non-BTK plants were evaluated; two pure stands and three mixed stands. Percentage ratios of BTK to non-BTK plants in the stands were 100:0, 75:25, 50:50, 25:75 and 0:100, respectively. In all stands with BTK plants, fewer bollworm and tobacco budworm larvae were found on BTK plants than non-BTK plants 24 h after infestation with third instars. At 48 h, significantly fewer tobacco budworm larvae, but not fewer bollworm larvae, were found on BTK plants. However, the number of larvae of either insect did not increase on non-BTK plants compared with the initial infestation density of three larvae per plant. The number of obacco budworm injured flower buds, and capsules was lower in all plant stands containing BTK plants compared with the pure stand of non-BTK at 48 h after infestation. Higher numbers of larvae on non-BTK plants were possibly the result of larval intoxication, reduced feeding, and increased plant abandonment and death on BTK plants rather than a classical feeding preference. Unexpectedly, the number of flower buds and capsules injured by bollworm and tobacco budworm when averaged per plant for all plants in a stand, differed little among the 75:25, 50:50 and 25:75 plant mixtures. These data suggest that larvae of both species frequently moved among plants, feeding indiscriminately on BTK and non-BTK plants.  相似文献   

20.
Susceptibilities of bollworm, Helicoverpa zea (Boddie) and tobacco budworm, Heliothis virescens (F.) to Cry1Ac were measured via a diet-incorporated assay with MPV II at the University of Arkansas during 2002-2004. Lethal concentration-mortality (LC50) estimates of five laboratory, seven laboratory-cross, and 10 field populations of H. virescens varied 12-fold. Pooled susceptibilities of H. virescens across all laboratory and field populations varied five-fold. The LC50 estimates for H. virescens were higher than those reported by previous research before the introduction of transgenic crops. However, the ratio of susceptibility of laboratory and field populations was similar, suggesting no change in overall species susceptibility. Individual LC50 estimates of five laboratory, nine laboratory-cross, and 57 field populations of H. zea varied over 130-fold. Pooled susceptibilities across laboratory and field populations varied widely. Among the field populations, colonies from non-Bacillus thuringiensis (Bt) crops were generally more susceptible than those from Bt crops. Across the Bt crops expressing Cry protein, colonies from Bollgard (Monsanto Company) cotton had lower susceptibility to CrylAc than those from Bt corn and those from non-Bt crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号