首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Domesticated species continually escaping and interbreeding with wild relatives impose a migration load on wild populations. As domesticated stocks become increasingly different as a result of artificial and natural selection in captivity, fitness of escapees in the wild is expected to decline, reducing the effective rate of migration into wild populations. Recent theory suggest that this may alleviate and eventually eliminate the resulting migration load. I develop a multivariate model of trait and wild fitness evolution resulting from the joint effects of artificial and natural selection in the captive environment. Initially, the evolutionary trajectory is dominated by the effects of artificial selection causing a fast initial decline in fitness of escapees in the wild. In later phases, through the counteracting effects of correlational multivariate natural selection in captivity, the mean phenotype is pushed in directions of weak stabilizing selection, allowing a sustained response in the trait subject to artificial selection. Provided that there is some alignment between the adaptive landscapes in the wild and in captivity, these phases are associated with slower rates of decline in wild fitness of the domesticated stock, suggesting that detrimental effects on wild populations are likely to remain a concern in the foreseeable future.  相似文献   

2.
Temperament traits are seen in many animal species, and recent evolutionary models predict that they could be maintained by heterogeneous selection. We tested this prediction by examining density‐dependent selection in juvenile common lizards Zootoca vivipara scored for activity, boldness and sociability at birth and at the age of 1 year. We measured three key life‐history traits (juvenile survival, body growth rate and reproduction) and quantified selection in experimental populations at five density levels ranging from low to high values. We observed consistent individual differences for all behaviours on the short term, but only for activity and one boldness measure across the first year of life. At low density, growth selection favoured more sociable lizards, whereas viability selection favoured less active individuals. A significant negative correlational selection on activity and boldness existed for body growth rate irrespective of density. Thus, behavioural traits were characterized by limited ontogenic consistency, and natural selection was heterogeneous between density treatments and fitness traits. This confirms that density‐dependent selection plays an important role in the maintenance of individual differences in exploration‐activity and sociability.  相似文献   

3.
Describing natural selection on phenotypic traits under varying environmental conditions is essential for a quantitative assessment of the scale at which adaptation might occur and of the impact of environmental variability on evolution. Here we analyzed patterns of multivariate selection via fecundity and viability on three reproductive traits (laying date, clutch size, and egg weight) in a population of great tits (Parus major). We quantified selection under different environmental conditions using (1) local variation in breeding density and (2) distinct areas of the population's habitat. We found that selection gradients were generally stronger for fecundity than for viability selection. We also found correlational selection acting on the combination of laying date and clutch size; this is the first documented evidence of such selection acting on these two traits in a passerine bird. Our analyses showed that both local breeding density and habitat significantly influenced selection patterns, hence favoring different patterns of reproductive investment at a small-scale relative to typical dispersal distances in this species. Canonical rotation of the nonlinear selection matrices yielded similar conclusions as traditional nonlinear selection analyses, and also showed that the main axes of selection and fitness surfaces varied over space within the population. Our results emphasize the importance of quantifying different forms of selection, and of including variation in environmental conditions at small scales to gain a better understanding of potential evolutionary dynamics in wild populations. This study suggests that the fitness landscape for this species is relatively rugged at scales relevant to the life histories of individual birds and their close relatives.  相似文献   

4.
Because domestication rarely leads to speciation, domesticated populations often hybridize with wild relatives when they occur in close proximity. Little work has focused on this question in clonally propagated crops. If selection on the capacity for sexual reproduction has been relaxed, these crops would not be expected to hybridize with their wild relatives as frequently as seed-propagated crops. Cassava is one of the most important clonally propagated plants in tropical agriculture. Gene flow between cassava and wild relatives has often been postulated, but never demonstrated in nature. We studied a population of a wild Manihot sp. in French Guiana, which was recently in contact with domesticated cassava, and characterized phenotypes (10 morphological traits) and genotypes (six microsatellite loci) of individuals in a transect parallel to the direction of hypothesized gene flow. Wild and domesticated populations were strongly differentiated at microsatellite loci. We identified many hybrids forming a continuum between these two populations, and phenotypic variation was strongly correlated with the degree of hybridization as determined by molecular markers. Analysis of linkage disequilibrium and of the diversity of hybrid pedigrees showed that hybridization has gone on for at least three generations and that no strong barrier prevents admixture of the populations. Hybrids were more heterozygous than either wild or domesticated individuals, and phenotypic comparisons suggested heterosis in vegetative traits. Our results also suggest that this situation is not uncommon, at least in French Guiana, and demonstrate the need for integrated management of wild and domesticated populations even in clonally propagated crops.  相似文献   

5.
Stabilizing selection is thought to be common in wild populations and act as one of the main evolutionary mechanisms, which constrain phenotypic variation. When multiple traits interact to create a combined phenotype, correlational selection may be an important process driving adaptive evolution. Here, we report on phenotypic selection and evolutionary changes in two natal traits in a semidomestic population of reindeer (Rangifer tarandus) in northern Finland. The population has been closely monitored since 1969, and detailed data have been collected on individuals since they were born. Over the length of the study period (1969–2015), we found directional and stabilizing selection toward a combination of earlier birth date and heavier birth mass with an intermediate optimum along the major axis of the selection surface. In addition, we demonstrate significant changes in mean traits toward earlier birth date and heavier birth mass, with corresponding genetic changes in breeding values during the study period. Our results demonstrate evolutionary changes in a combination of two traits, which agree closely with estimated patterns of phenotypic selection. Knowledge of the selective surface for combinations of genetically correlated traits are vital to predict how population mean phenotypes and fitness are affected when environments change.  相似文献   

6.
In some ecological settings, an individual's fitness depends on both its own phenotype (individual-level selection) as well as the phenotype of the individuals with which it interacts (group-level selection). Using contextual analysis to measure multilevel selection in experimental stands of Arabidopsis thaliana, we detected significant linear selection that reversed across individual versus group levels for two composite phenotypic traits, "size" and "elongation." In both cases, selection at the individual level acted to increase values of these traits, presumably due to their positive effect on resource acquisition. Group selection favored decreased values of the same traits. Nonlinear selection was weak but significant in several cases, including stabilizing selection on developmental rate; individuals with very rapid development likely had lower than average fitness due to their reduced resource level at reproduction, while very delayed reproduction may have resulted in lower fitness if prolonged competition for resources reduced overall environmental quality and fitness of all individuals in a group. Under this scenario, stabilizing selection on individual traits is evidence of selection at the group level. Significant density-dependent selection suggests that a threshold density must be reached before group selection acts. Below this threshold, selection at the individual level affects phenotypic evolution more strongly than group selection. A second experiment measured multilevel selection in progeny stands of the original experimental plants. Multilevel selection again acted antagonistically on a composite trait that included size and elongation as well as on an architectural trait, branch production. The magnitude of individual versus group selection was relatively similar in the progeny generation, and the observed balance of individual versus group selection across densities is generally consistent with the hypotheses that multilevel selection can contribute to phenotypic evolution and to important demographic phenomena, including soft selection and the "law of constant yield."  相似文献   

7.
Evolutionary models estimating phenotypic selection in character size usually assume that the character is invariant across reproductive bouts. We show that variation in the size of reproductive traits may be large over multiple events and can influence fitness in organisms where these traits are produced anew each season. With data from populations of two orchid species, Caladenia valida and Tolumnia variegata, we used Bayesian statistics to investigate the effect on the distribution in fitness of individuals when the fitness landscape is not flat and when characters vary across reproductive bouts. Inconsistency in character size across reproductive periods within an individual increases the uncertainty of mean fitness and, consequently, the uncertainty in individual fitness. The trajectory of selection is likely to be muddled as a consequence of variation in morphology of individuals across reproductive bouts. The frequency and amplitude of such changes will certainly affect the dynamics between selection and genetic drift.  相似文献   

8.
Understanding how selection operates on a set of phenotypic traits is central to evolutionary biology. Often, it requires estimating survival (or other fitness‐related life‐history traits) which can be difficult to obtain for natural populations because individuals cannot be exhaustively followed. To cope with this issue of imperfect detection, we advocate the use of mark‐recapture data and we provide a general framework for both the estimation of linear and nonlinear selection gradients and the visualization of fitness surfaces. To quantify the strength of selection, the standard second‐order polynomial regression method is integrated in mark‐recapture models. To visualize the form of selection, we use splines to display selection acting on multivariate phenotypes in the most flexible way. We employ Markov chain Monte Carlo sampling in a Bayesian framework to estimate model parameters, assessing traits relevance and calculating the optimal amount of smoothing. We illustrate our approach using data from a wild population of Common blackbirds (Turdus merula) to investigate survival in relation to morphological traits, and provide evidence for correlational selection using the new methodology. Overall, the framework we propose will help in exploring the full potential of mark‐recapture data to study natural selection.  相似文献   

9.
Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can be dramatically lessened or reversed when individuals move preferentially toward patches conferring higher fitness. Evolutionary ecologists have long modeled nonrandom dispersal, focusing primarily on its effects on population density over space, the maintenance of genetic variation, and reproductive isolation. Here, we build upon previous work by calculating how the extent of local adaptation and the migration load are affected when individuals differ in their dispersal rate in a genotype‐dependent manner that alters their match to their environment. Examining a one‐locus, two‐patch model, we show that local adaptation occurs through a combination of natural selection and adaptive dispersal. For a substantial portion of parameter space, adaptive dispersal can be the predominant force generating local adaptation. Furthermore, genetic load may be largely averted with adaptive dispersal whenever individuals move before selective deaths occur. Thus, to understand the mechanisms driving local adaptation, biologists must account for the extent and nature of nonrandom, genotype‐dependent dispersal, and the potential for adaptation via spatial sorting of genotypes.  相似文献   

10.
In group living species, individuals may gain the indirect fitness benefits characterizing kin selection when groups contain close relatives. However, tests of kin selection have primarily focused on cooperatively breeding and eusocial species, whereas its importance in other forms of group living remains to be fully understood. Lekking is a form of grouping where males display on small aggregated territories, which females then visit to mate. As females prefer larger aggregations, territorial males might gain indirect fitness benefits if their presence increases the fitness of close relatives. Previous studies have tested specific predictions of kin selection models using measures such as group‐level relatedness. However, a full understanding of the contribution of kin selection in the evolution of group living requires estimating individuals' indirect fitness benefits across multiple sites and years. Using behavioural and genetic data from the black grouse (Tetrao tetrix), we show that the indirect fitness benefits of group membership were very small because newcomers joined leks containing few close relatives who had limited mating success. Males' indirect fitness benefits were higher in yearlings during increasing population density but marginally changed the variation in male mating success. Kin selection acting through increasing group size is therefore unlikely to contribute substantially to the evolution and maintenance of lekking in this black grouse population.  相似文献   

11.
Abstract.— The present study explored phenotypic selection on phenological and morphological reproductive traits in hawkmoth-pollinated Platanthera bifolia (Orchidaceae), a Eurasian perennial herb displaying bisexual, long-spurred flowers. The work was carried out during three flowering seasons (1993–1995) in a Swedish population. Fitness was estimated as the number of pollinia removed (male fitness) and fruits produced (female fitness). Targets and patterns of selection were compared between years and sex functions by the use of multiple linear regression (including correlational selection estimates, i.e., of combination of traits), analysis of covariance, and projection pursuit regression (PPR). Results from the nonparametric surface-fitting-method PPR showed that selection was mostly linear, thus justifying the use of the parametric methods. In all study years, male and female fitness were highest in plants with many flowers. This reflects that flower number sets an upper limit to fitness and that a large inflorescence attracts more pollinators. In 1994, the summer was dry and the average spur length of P. bifolia was shorter than in the other years. In this year, male and female fitness were positively related to spur length, apparently because the spur of short-spurred plants was somewhat too short relative to the tongue length of the local pollinator for optimal pollen export and import. Additionally, the dry weather in 1994 caused a tendency for correlational selection, which was not found in the other years of study. Among small individuals (apparently more sensitive to drought than large ones), early-flowering plants had higher male and female fitness. The results show that patterns of selection may vary both between years and between sex functions in perennial hermaphroditic plants. The present study is one of the first to consider correlational selection in plants, which probably is of common occurrence and deserves to be investigated more.  相似文献   

12.
When a trait's effect on fitness depends on its interaction with other traits, the resultant selection is correlational and may lead to the integration of functionally related traits. In relation to sexual selection, when an ornamental trait interacts with phenotypic quality to determine mating success, correlational sexual selection should generate genetic correlations between the ornament and quality, leading to the evolution of honest signals. Despite its potential importance in the evolution of signal honesty, correlational sexual selection has rarely been measured in natural populations. In the dark-eyed junco (Junco hyemalis), males with experimentally elevated values of a plumage trait (whiteness in the tail or "tail white") are more attractive to females and dominant in aggressive encounters over resources. We used restricted maximum-likelihood analysis of a long-term dataset to measure the heritability of tail white and two components of body size (wing length and tail length), as well as genetic correlations between pairs of these traits. We then used multiple regression to assess directional, quadratic, and correlational selection as they acted on tail white and body size via four components of lifetime fitness (juvenile and adult survival, mating success, and fecundity). We found a positive genetic correlation between tail white and body size (as measured by wing length), which indicates past correlational selection. Correlational selection, which was largely due to sexual selection on males, was also found to be currently acting on the same pair of traits. Larger males with whiter tails sired young with more females, most likely due to a combination of female choice, which favors males with whiter tails, and male-male competition, which favors both tail white and larger body size. To our knowledge, this is the first study to show both genetic correlations between sexually selected traits and currently acting correlational sexual selection, and we suggest that correlational sexual selection frequently may be an important mechanism for maintaining the honesty of sexual signals.  相似文献   

13.
Evolution of plant resistance and tolerance to frost damage   总被引:1,自引:0,他引:1  
Plant defence against any type of stress may involve resistance (traits that reduce damage) or tolerance (traits that reduce the negative fitness impacts of damage). These two strategies have been proposed as redundant evolutionary alternatives. A late‐season frost enabled us to estimate natural selection and genetic constraints on the evolution of frost resistance and tolerance in a wild plant species. We employed a genetic selection analysis (which is unbiased by environmental correlations between traits and fitness) on 75 paternal half‐sibling families of annual wild radish [Raphanus raphanistrum (Brassicaceae)]. In an experimental population in southern Ontario, we found strong selection favouring plant resistance to frost, but selection against tolerance to frost. The selection against tolerance may have been caused by a cost of tolerance, as we provide evidence for a negative genetic correlation between tolerance and fitness in the absence of frost damage. Although we found no evidence for the theoretically predicted trade‐off between frost tolerance and resistance among our families, we did detect negative correlational selection acting on the two traits, indicating that natural selection favoured high resistance combined with low tolerance and low resistance coupled with high tolerance, but not high or low levels of both traits together. There were few genetic correlations between the measured traits overall, but frost tolerance was negatively correlated with initial seed mass, and frost resistance was positively correlated with resistance to insect herbivory. Periodic episodes of strong selection such as that caused by the late‐season frost may be disproportionately important in evolution, and are likely becoming more common because of human alterations of the environment.  相似文献   

14.
The Zebra Finch Taeniopygia guttata is a model bird species for the experimental study of behavioural and evolutionary concepts in captivity and especially sexual selection. The validity of sexual selection studies of domesticated birds is of long‐standing concern as little is known about the influence of domestication on sexually selected traits. Most domesticated Zebra Finch populations are maintained under a strict breeding regime to avoid potential inbreeding. However, these breeding regimes may interfere with the processes of sexual selection and influence the evolution of sexually selected traits because they may limit or prohibit active mate choice. Here, we investigated the potential impact of a monogamous breeding scheme in a domesticated population in which active mate choice is largely inhibited, on the evolution of sperm morphometry as a sexually selected trait. We compared sperm morphometric traits (total sperm length and length of sperm head, midpiece and flagellum), and the variance thereof, between a domesticated and two wild Zebra Finch populations. Although we found significant differences between the three populations for certain sperm traits (head length, midpiece length), which may be of importance in postcopulatory sexual selection, overall, variance in sperm morphometry did not differ between the domesticated and the wild Zebra Finch populations. Our results validate the use of domesticated Zebra Finches for further studies of postcopulatory sexual selection and sperm competition.  相似文献   

15.
Divergent selection pressures among populations can result not only in significant differentiation in morphology, physiology and behaviour, but also in how these traits are related to each other, thereby driving the processes of local adaptation and speciation. In the Australian zebra finch, we investigated whether domesticated stock, bred in captivity over tens of generations, differ in their response to a life‐history manipulation, compared to birds taken directly from the wild. In a ‘common aviary’ experiment, we thereto experimentally manipulated the environmental conditions experienced by nestlings early in life by means of a brood size manipulation, and subsequently assessed its short‐ and long‐term consequences on growth, ornamentation, immune function and reproduction. As expected, we found that early environmental conditions had a marked effect on both short‐ and long‐term morphological and life‐history traits in all birds. However, although there were pronounced differences between wild and domesticated birds with respect to the absolute expression of many of these traits, which are indicative of the different selection pressures wild and domesticated birds were exposed to in the recent past, manipulated rearing conditions affected morphology and ornamentation of wild and domesticated finches in a very similar way. This suggests that despite significant differentiation between wild and domesticated birds, selection has not altered the relationships among traits. Thus, life‐history strategies and investment trade‐offs may be relatively stable and not easily altered by selection. This is a reassuring finding in the light of the widespread use of domesticated birds in studies of life‐history evolution and sexual selection, and suggests that adaptive explanations may be legitimate when referring to captive bird studies.  相似文献   

16.
Inbreeding depression, or the reduction in fitness due to mating between close relatives, is a key issue in biology today. Inbreeding negatively affects many fitness‐related traits, including survival and reproductive success. Despite this, very few studies have quantified the effects of inbreeding on vertebrate gamete traits under controlled breeding conditions using a full‐sib mating approach. Here, we provide comprehensive evidence for the negative effect of inbreeding on sperm traits in a bird, the zebra finch Taeniopygia guttata. We compared sperm characteristics of both inbred (pedigree F = 0.25) and outbred (pedigree F = 0) individuals from two captive populations, one domesticated and one recently wild‐derived, raised under standardized conditions. As normal spermatozoa morphology did not differ consistently between inbred and outbred individuals, our study confirms the hypothesis that sperm morphology is not particularly susceptible to inbreeding depression. Inbreeding did, however, lead to significantly lower sperm motility and a substantially higher percentage of abnormal spermatozoa in ejaculate. These results were consistent across both study populations, confirming the generality and reliability of our findings.  相似文献   

17.
Domestication is a selection process that genetically modifies species to meet human needs. A most intriguing feature of domestication is the extreme phenotypic diversification among breeds. What could be the ultimate source of such genetic variations? Another notable outcome of artificial selection is the reduction in the fitness of domesticated species when they live in the wild without human assistance. The complete sequences of the two subspecies of rice cultivars provide an opportunity to address these questions. Between the two subspecies, we found much higher rates of non‐synonymous (N) than synonymous (S) substitutions and the N/S ratios are higher between cultivars than between wild species. Most interestingly, substitutions of highly dissimilar amino acids that are deleterious and uncommon between natural species are disproportionately common between the two subspecies of rice. We suggest strong selection in the absence of effective recombination may be the driving force, which we called the domestication‐associated Hill‐Robertson effect. These hitchhiking mutations may contribute to some fitness reduction in cultivars. Comparisons of the two genomes also reveal the existence of highly divergent regions in the genomes. Haplotypes in these regions often form highly polymorphic linkage blocks that are much older than speciation between wild species. Genes from such regions could contribute to the differences between indica and japonica and are likely to be involved in the diversifying selection under domestication. Their existence suggests that the amount of genetic variation within the single progenitor species Oryza rufipogon may be insufficient to account for the variation among rice cultivars, which may come from a more inclusive gene pool comprising most of the A‐genome wild species. Genes from the highly polymorphic regions also provide strong support for the independent domestication of the two subspecies. The genomic variation in rice has revealing implications for studying the genetic basis of indica‐japonica differentiation under rice domestication and subsequent improvement.  相似文献   

18.
Migration tends to oppose the effects of divergent natural selection among populations. Numerous theoretical and empirical studies have demonstrated that this migration-selection balance constrains genetic divergence among populations. In contrast, relatively few studies have examined immigration's effects on fitness and natural selection within recipient populations. By constraining local adaptation, migration can lead to reduced fitness, known as a "migration load," which in turn causes persistent natural selection. We develop a simple two-island model of migration-selection balance that, although very general, also reflects the natural history of Timema cristinae walking-stick insects that inhabit two host plant species that favor different cryptic color patterns. We derive theoretical predictions about how migration rates affect the level of maladaptation within populations (measured as the frequency of less-cryptic color-pattern morphs), which in turn determines the selection differential (the within-generation morph frequency change). Using data on color morph frequencies from 25 natural populations, we confirm previous results showing that maladaptation is higher in populations receiving more immigrants. We then present novel evidence that this increased maladaptation leads to larger selection differentials, consistent with our model. Our results provide comparative evidence that immigration elevates the variance in fitness, which in turn leads to larger selection differentials, consistent with Fisher's Theorem of Natural Selection. However, we also find evidence that recurrent adult migration between parapatric populations may tend to obscure the effects of selection.  相似文献   

19.
In age-structured populations, viability and fecundity selection of varying strength may occur in different age classes. On the basis of an original idea by Fisher of weighting individuals by their reproductive value, we show that the combined effect of selection on traits at different ages acts through the individual reproductive value defined as the stochastic contribution of an individual to the total reproductive value of the population the following year. The selection differential is a weighted sum of age-specific differentials that are the covariances between the phenotype and the age-specific relative fitness defined by the individual reproductive value. This enables estimation of weak selection on a multivariate quantitative character in populations with no density regulation by combinations of age-specific linear regressions of individual reproductive values on the traits. Demographic stochasticity produces random variation in fitness components in finite samples of individuals and affects the statistical inference of the temporal average directional selection as well as the magnitude of fluctuating selection. Uncertainties in parameter estimates and test power depend strongly on the demographic stochasticity. Large demographic variance results in large uncertainties in yearly estimates of selection that complicates detection of significant fluctuating selection. The method is illustrated by an analysis of age-specific selection in house sparrows on a fitness-related two-dimensional morphological trait, tarsus length and body mass of fledglings.  相似文献   

20.
To assess whether floral integration patterns result from the action of pollinator selection on functionally related traits, we compared corolla integration patterns in eight Schizanthus species differing in pollination systems and in their degree of pollinator dependence across a molecular phylogeny. Integration patterns differed among species and these differences were not related to their phylogenetic relatedness. When the putative original function of some corolla traits was lost in pollinator-dependent species, the integration among nonfunctional characters and the rest of the corolla traits was disrupted. This pattern was not presented in species adapted for late autonomous selfing, which exhibited higher corolla integration than their pollinator-dependent relatives. These results suggest that corolla integration in pollinator-dependent species was shaped by pollinator-mediated selection. Decoupling of nonfunctional traits in these species may result from a relaxation of correlational selection or from selection acting against a default covariation provided by genetic and developmental connections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号