首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 428 毫秒
1.
The immunoregulatory functions of human T8 cell subpopulations defined by mAb to the CD45RA molecule (2H4) were examined. Both CD45RA+ and CD45RA- T8 cells that had been treated with mitomycin C provided help for the production of immunoglobulins by B cells in cultures stimulated with immobilized mAb to CD3 (64.1). In contrast, both CD45RA+ and CD45RA- T8 cells that had not been treated with mitomycin C suppressed B cell responses in anti-CD3-stimulated cultures, although CD45RA+ T8 cells were more effective in this regard. Interleukin 2 (IL2) enhanced suppression by anti-CD3-activated CD45RA- T8 cells, whereas suppression by CD45RA+ T8 cells was almost maximal and not as much increased by IL2. The differentiation into suppressor-effector cells in this system appeared to involve the production of IL2, but not the production of interferon (INF)-gamma. Thus, CD45RA+ T8 cells produced higher amounts of IL2 but lower amounts of IFN-gamma than CD45RA- T8 cells in anti-CD3-stimulated cultures. Moreover, addition of mAb to the p55 component of IL2 receptor (anti-Tac) inhibited the generation of suppressor activity from CD45RA+ and CD45RA- T8 cells. The pattern and magnitude of suppression of B cell responses by CD45RA+ and CD45RA- T4 cells were similar to that by CD45RA+ and CD45RA- T8 cells in this system. Finally, preactivated CD45RA+ T8 cells that had lost CD45RA expression suppressed the B cell responses as effectively as fresh CD45RA+ T8 cells. The results indicate that both CD45RA+ and CD45RA- T8 cells can help or suppress B cell responses. More importantly, the data suggest that the suppressor-effector function of human T cells may rather be related with the stages of the post-thymic differentiation as evidenced by the expression of the CD45RA molecule than represent the fully differentiated T cell subsets, such as T4 and T8 cells. In addition, the CD45RA molecule appeared not to be involved in the suppressor-effector function, but to determine the stage of post-thymic differentiation.  相似文献   

2.
The immunoregulatory functions of human T4 cell subpopulations defined by mAb to the CD45R molecule (2H4) were examined. Both CD45R- and CD45R+ T4 cells that had been treated with mitomycin C (CD45R- and CD45R+ T4-mito) provided help for the generation of Ig-secreting cells (ISC) in cultures stimulated by PWM or by immobilized mAb to CD3 (64.1). IL-2 enhanced the generation of ISC in PWM-stimulated cultures and in anti-CD3-stimulated cultures containing CD45R+ T4-mito. The generation of ISC was maximal in cultures containing anti-CD3-activated CD45R- T4-mito and was not increased by IL-2. By contrast, CD45R+ T4 cells that had not been treated with mitomycin C suppressed B cell responses in cultures stimulated with PWM or anti-CD3, whereas CD45R- T4 cells suppressed the generation of ISC only in cultures stimulated with anti-CD3. IL-2 enhanced suppression by anti-CD3, but not PWM, activated CD45R- T4 cells. Suppression by CD45R+ T4 cells was maximal and not increased by IL-2. CD45R+ T4-mito were more effective suppressor-inducers in PWM-stimulated cultures, promoting the differentiation of suppressor-effector cells from CD8+ T cells. However, both CD45R+ and CD45R- T4-mito exerted comparable suppressor-inducer function in anti-CD3-stimulated cultures. Moreover, in anti-CD3-stimulated cultures, T8 cells could function as both suppressor-effector cells and suppressor-inducer cells. One of the functions of suppressor-inducer cells in this system appeared to involve the production of IL-2. Thus, the addition of IL-2 facilitated the induction of suppressor-effector T8 cells by CD45R- T4-mito in PWM-stimulated cultures. Although IL-2 production by the T cell subsets varied widely depending on the nature of the stimulus, these differences could not entirely explain their capacity to function as helper cells, suppressor-effector cells or suppressor-inducer cells. These results indicate that both CD45R+ and CD45R- T4 cells can help or suppress B cell responses, as well as induce suppressor-effector T8 cells. Moreover, suppressor-inducer function of T cells is not limited to the T4 cell population, but rather can also be accomplished by T8 cells. The results indicate that both T4 cell subsets and T8 cells exert multiple regulatory effects on human B cell function, with the nature of the activating stimulus playing a major role in determining the functional capacity of various T cell subsets.  相似文献   

3.
Although normal numbers of CD4+ T cells are present in the human neonate, cord blood CD4+ cells are deficient in their ability to provide help for antibody production. In the present studies, we have examined the cellular basis for this functional deficit by analyzing the phenotypic properties and immunoregulatory functions of the subsets of cord blood CD4+ cells defined by anti-CD45RA mAb. In contrast to CD4+ cells from adults, greater than 90% of cord blood CD4+ cells expressed the CD45RA, CD38, and Leu-8 membrane Ag. When neonatal CD4+ cells were cultured with adult B cells and PWM or anti-CD4+ mAb, no helper function was apparent. However, when the small number of CD4+CD45RA- cells in cord blood were purified and similarly analyzed, helper activity comparable to that of adult CD4+CD45RA- cells was found. This helper function was profoundly suppressed by the presence of even small numbers of cord blood (but not adult) CD4+CD45RA+ cells. Irradiation of mitomycin C treatment of neonatal CD4+CD45RA+ cells abrogated their suppressor activity, but did not induce helper capability. However, after activation with PHA and culture in IL-2, cord blood CD4+CD45RA+ cells lost their suppressor activity and acquired the ability to provide help for B cell differentiation. This functional maturation was accompanied by their conversion to the CD4+CD45RA- phenotype. Thus, whereas cord blood CD4+CD45RA+ and CD4+CD45RA- cells share certain properties with the analogous subsets in adults, our data show that the dominant immunoregulatory function of cord blood CD4+ cells is suppression mediated by CD4+CD45RA+ (and CD38+) cells. In view of these phenotypic and functional differences between neonatal and adult CD4+CD45RA+ cells, we propose that "naive" CD4+CD45RA+ cells undergo age-related maturational changes that are unrelated to their postulated activation-dependent post-thymic differentiation into CD4+CD45RA- "memory" cells capable of helper functions.  相似文献   

4.
Regulation of the immune response in man is largely dependent on interactions between cells of the cluster designation 4+ (CD4+) helper/inducer sublineage and the CD8+ suppressor/cytotoxic sublineage. When cultured with autologous antigen-primed CD4+ lymphocytes, CD8+ cells differentiate into suppressor T cells (Ts) that specifically inhibit the response of fresh autologous CD4+ cells to the priming antigen only. The current study was undertaken to analyze the roles in this suppressor circuit of subpopulations of the CD4+ sublineage distinguished from one another on the basis of their binding (or lack of binding) to monoclonal antibodies against molecules p80 (Leu8) and CD45R (p220/Leu18/2H4). When examined for the proliferative responses to alloantigenic stimuli, each of the four: CD4+p80+, CD4+p80-, CD4+CD45R+, and CD4+CD45R- populations proliferated vigorously, synthesized interleukin 2 (IL-2) and interferon and released soluble IL-2 receptors. However, the responses to soluble antigens such as Candida and diphtheria toxoid were exhibited by CD4+CD45R-, CD4+p80+, and CD4+p80- cells, but not by CD4+CD45R+ cells. When examined for their ability to induced CD8+ Ts in the Candida-driven suppressor-induction culture system, only CD4+p80+ and CD4+CD45R- cells induced strong suppression. Further, when CD4+CD45R- cells were separated into CD4+CD45R-p80+ and CD4+CD45R-p80- subpopulations, despite the ability of both subpopulations to respond to Candida, only CD4+CD45R-p80+ cells induced autologous CD8+ Ts. Activated CD8+ Ts suppressed not only proliferation but also the release of soluble IL-2 receptors by autologous antigen-activated CD4+ cells. Thus, the antigen-specific suppressor-inducer T cells appear to be derived from the CD4+CD45R-p80+ (Leu3+, Leu8+, 2H4-) subpopulation of the CD4+ sublineage.  相似文献   

5.
In vivo UV exposure of human epidermis abrogates the function of CD1+DR+ Langerhans cells and induces the appearance of CD1-DR+ Ag-presenting macrophages. Epidermal cells from UV-exposed skin, in contrast to epidermal cells from normal skin, potently activate autologous CD4+ T cells, and, in particular, the CD45RA+ (2H4+) (suppressor-inducer) subset. We therefore determined whether UV-exposure in humans leads to a T cell response in which suppression dominates. Autologous blood T cells were incubated with epidermal cell suspensions from in vivo UV-irradiated skin. After activation, repurified T cells were transferred in graded numbers to autologous mononuclear cells (MNC) stimulated with PWM and the resultant IgG production analyzed by ELISA. Relative to T cells activated by unirradiated control epidermal cells, T cells activated by UV-exposed epidermal cells demonstrated enhanced capacity to suppress IgG production (n = 6; p less than or equal to 0.03). Within the T cell population, CD8+ cells stimulated by UV-exposed epidermal cells could be directly activated to suppress PWM-stimulated MNC Ig production if IL-2 was provided in the reaction mixture. The suppressive activity was also transferable with purified CD4+ T cells stimulated by UV-exposed epidermal cells (n = 10; p less than or equal to 0.01), and was radiosensitive. Suppression was decreased when PWM-stimulated MNC were depleted of CD8+ T cells before mixing with CD4+ T cells activated by UV-exposed epidermal cells, suggesting indirect induction of CD8+ Ts cells contained within the responding MNC populations. Indeed, physical depletion of CD45RA+ cells resulted in total abrogation of the suppressor function contained in the CD4+ T cells. Activation of suppressor function was critically dependent on DR+ APC contained in UV-exposed epidermis. The data suggest that UV-exposure modulates cutaneous APC activity in humans, as in mice, such that the dominant immune response is tilted toward suppression. These mechanisms in normal individuals may function to dampen responses to UV-induced endogenous Ag that are pathogenic in autoimmune disorders. However, these mechanisms might also facilitate the growth of UV-induced skin cancers.  相似文献   

6.
The subpopulations of CD8+ T cells defined by CD45RA Ag expression have been hypothesized to represent cells varying in their relative maturation along a common, activation-dependent differentiation pathway. Previous studies have shown that both the CD8+CD45RA+ and CD8+CD45RA- subsets contain precursor cells capable of developing into alloreactive CTL. In the current study, we have examined the mechanisms involved in the generation of CTL effector cells from these two CD8+ subsets. Purified CD8+CD45RA+ or CD8+CD45RA- cells were stimulated with allogeneic non-T cells, either alone or in the presence of CD4+ Th cells. Although the generation of CTL from CD8+CD45RA- precursor cells consistently required the presence of CD4+ Th cells, cytotoxic effector cells could be generated from CD8+CD45RA+ precursor cells in the absence of CD4+ cells. Several lines of evidence indicated that the helper cell-independent generation of cytotoxic effector cells from CD8+CD45RA+ precursors resulted from the unique ability of this subset to produce and use IL-2 in an autocrine fashion: 1) exogenous IL-2 could replace the effects of CD4+ helper cells for either CD8+ subset; 2) the helper cell-independent functional maturation of CD8+CD45RA+ cells could be blocked by anti-CD25 or anti-IL-2 antibodies; and 3) CD8+CD45RA+ cells produced IL-2 after activation with allogeneic cells. The finding that precursors for helper cell-independent CTL generation are restricted to the CD8+CD45RA+ subset suggests that this capability may vary as a function of the maturation of CD8+ cells.  相似文献   

7.
We have previously shown that Con A-induced suppressor T cells belong to the CD45RA+ subset. After unseparated T cells are activated with Con A, CD45RA expression increases to a maximum (Day 2), and then decreases significantly, but does not disappear entirely (Day 9), while CD29 expression increases steadily. In the present study, we examined the fate of these cell surface molecules on isolated CD4+CD45RA+ and CD4+CD45RA- cells following activation with Con A, and their relationship to the regulatory functions of these subsets. After activation of CD4+CD45RA+ cells with Con A, CD45RO and CD29 antigen expression rapidly increases (greater than 90%). While CD45RA expression is downregulated, approximately 40% of the cells continue to express low-density CD45RA in a stable fashion through Day 21. Despite these phenotypic changes, cells originally CD45RA+ continue to suppress IgG synthesis and provide only minimal B cell help. Furthermore, when cells originally CD45RA+ were sorted on the basis of continued presence, or loss of CD45RA antigen 14 days after activation, both populations demonstrated potent suppression and minimal help. In contrast, after activation with Con A, CD4+CD45A- cells maintain stable phenotype and provide significant help and minimal suppression. Immunoprecipitation of the CD45RA antigen from Day 14 activated CD4+CD45RA+ cells confirms the continued presence of the 205-kDa isoform, but reveals a significant decrease in the 220-kDa isoform. These results suggest that after activation with Con A, cells originally CD45RA+ remain functionally distinct from cells originally CD45RA-, and that CD45RA antigen persists on a subpopulation of CD45RA+ cells after activation with Con A.  相似文献   

8.
The immune response to chicken egg-white lysozyme (HEL) is actively and specifically regulated by antigen-specific T cell-mediated suppression in mice bearing the H-2b haplotype; the suppression is therefore MHC-linked. In this report, we propose a possible mechanism for MHC-linked suppression of HEL-helper T cells based on expression of I region-encoded cell surface determinants. We determined whether inhibition of anti-HEL antibody responses correlated with expression of serologically detectable I-A-encoded cell surface determinants by antigen-specific helper, suppressor-inducer, or suppressor-effector T cells. It was observed that HEL-suppressor-effector T cells, but not helper or suppressor-inducer T cells, were eliminated after treatment with anti-I-Ab antibody and complement. Furthermore, suppressor-effector T cells co-express Thy-1, Lyt-2, and I-A cell surface antigens. These results raise the possibility that HEL-specific helper T cells become functionally inhibited after recognition of HEL and I-A alloantigen displayed by suppressor-effector T cells. Thus, the interaction between helper and suppressor T cells may be analogous to the mechanism of T cell-B cell interaction.  相似文献   

9.
Regulation of the immune response in man is dependent on interactions between cells of helper/inducer (Leu-3+/T4+) lineage and cells of suppressor/cytotoxic (Leu-2+/T8+) lineage. By using the mixed leukocyte reaction (MLR) as a model system, we have shown previously that alloantigen-primed Leu-3+ cells induce autologous Leu-2+ cells to differentiate into suppressor T cells that specifically inhibit the response of fresh T cells to the original allogeneic stimulator cells. The current study was undertaken to analyze the roles in this suppressor circuit of subpopulations of Leu-3+ cells distinguished from one another on the basis of their binding or lack of binding to monoclonal anti-Leu-8 antibody. Although both Leu-3+,8- and Leu-3+,8+ T cells proliferated in allogeneic MLR, alloactivated Leu-3+,8+ cells alone induced proliferation and differentiation of Leu-2+ suppressor cells. Leu-3+,8+ cells also induced Leu-3+,8- cells to proliferate, and following their activation in this manner, such autoactivated Leu-3+,8- cells augmented the differentiation of Leu-2+ suppressor cells, but only in the presence of alloactivated Leu-3+,8+ cells. Furthermore, this effect, like the suppressor effect, was specific for the inducer cells, and thus indirectly for the HLA-DR antigens of the original allogeneic stimulator cells as well. These results indicate that alloantigen-primed Leu-3+,8+ cells not only activate specific Leu-2+ suppressor cells but also activate specific Leu-3+,8- suppressor-amplifier cells, and in combination, these cells exert potent feedback inhibition of MLR.  相似文献   

10.
We report that the subsets of CD4+ T cells characterized by differential expression of CD45RA (2H4) Ag showed significant differences in proliferative response to immobilized anti-CD3 antibody (Ab) and cytokines: IL-1, IL-2, IL-4, and IL-6. Most strikingly, CD4+/45RA+ but not CD4+/45RA- T cells responded to anti-CD3 Ab and IL-4. Similar difference in response to IL-4 occurred when the subsets were stimulated by two "alternative" T cell activation pathways via CD2 and GD3 Ag. The response of CD4+/45RA+ cells to anti-CD3 Ab and IL-4 was enhanced by the two monokines: IL-1 and IL-6. Further differences between the subsets included the preferential response of the CD4+/45RA+ cells to enhancing effect of IL-6 on proliferation mediated by the anti-CD3 Ab and IL-2. In contrast to IL-6, IL-1 was unable to increase this proliferation significantly. In turn, the CD4+/45RA- cells responded preferentially to a weak stimulation mediated by anti-CD3 Ab either alone, or together with IL-1 and IL-6. Existence of these significant differences in the response of CD4+ T cell subsets costimulatory effects of the cytokines, suggests that the in vivo events resulting in an accumulation of the cytokines in particular combinations may lead to selective activation of one of the CD4+ T cell subsets during the immune response.  相似文献   

11.
We showed previously that T cells with the phenotype Leu-3+,8+ are required for the induction of antigen-specific Leu-2+ suppressor cells. Furthermore, when mixed lymphocyte reactions are carried out in the presence of 1 microgram/ml cyclosporin A (CsA), such cultures lead preferentially to the activation of alloantigen-specific suppressor-inducer Leu-3+,8+ cells. In an attempt to generate a clone of T cells with such specific suppressor-inducer properties, we activated Leu-3+,8+ T cells with allogeneic (HLA-DR4+) lymphocytes in the presence of CsA. Clone SP-21, derived by propagating such activated T cells with conditioned medium containing IL 2, is a noncytotoxic, nonsuppressor clone that specifically proliferates to allogeneic cells bearing HLA-DR4 antigen. When cultured with fresh autologous Leu-2+ cells in the absence of HLA-DR4+ cells, clone SP-21 selectively activates Leu-2+ suppressor cells, which inhibit the response of fresh Leu-3+ cells to DR4+ stimulator cells. On the other hand, clone SP-21 fails to induce cytolytic T cells or to help B cell differentiation. These results demonstrate that a T cell clone with a remarkably narrow functional repertoire nonetheless contains and transmits all of the signals necessary for the activation of antigen-specific suppressor cells.  相似文献   

12.
In this study, we examined the role of CD31 as a cell surface marker for subsets of human CD4 cells. CD31, as defined by a newly developed mAb termed anti-1F11, can divide activated as well as resting CD4 cells into distinct functional subpopulations, based on its surface expression. Among CD4 cells freshly isolated from peripheral blood, anti-1F11 preferentially reacts with the CD45RA+ subset. The majority of helper activity for B cell IgG synthesis and memory function to recall Ag such as tetanus toxoid or mumps was found within the CD31- CD4 cell population, whereas CD31+ CD4 cells provided poor helper function for B cell IgG synthesis and were more responsive to Con A and autologous MHC (autologous MLR). The expression of CD31 on CD45RA+ CD4 cells did not change after activation, despite the loss of CD45RA from the cell surface. Conversely, CD31 was not acquired after activation of CD45RO+ CD45RA- CD4 cells. Furthermore, activated CD4 cells expressing CD31 can induce suppressor function for B cell IgG synthesis, whereas the reciprocal population of activated CD4 cells (CD31-) provide strong helper function for B cell IgG production. Finally, IL-4 production could only be induced by stimulation with PMA and ionomycin in either resting or activated CD31- CD4 cells. Thus, CD31 may prove useful in defining CD4 populations with reciprocal functional programs. Moreover, unlike other markers used for this purpose, the expression of CD31 does not change after activation and may serve as a more useful marker for identification of cells of suppressor or helper lineage.  相似文献   

13.
T cell subsets that regulate antibody responses to L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in mice that are Ir gene non-responders have been further characterized. We previously defined several T cell subsets in GAT-primed non-responder mice. The Lyt-2+ suppressor-effector T cells suppress responses to GAT and GAT complexed to methylated BSA (GAT-MBSA). The Lyt-1+ cell population is complex and can be separated into I-J- Th cells, which support responses to GAT and GAT-MBSA. After priming, the Lyt-1+, I-J+ cell population contains suppressor-inducer cells that activate precursors of suppressor-effector cells to suppress responses to GAT and GAT-MBSA as well as Ts cells that directly inhibit responses to GAT but not GAT-MBSA. By contrast, the Lyt-1+ cells from virgin mice contain only cells that directly suppress responses to GAT but not GAT-MBSA. The major question addressed in the present studies was whether the Lyt-1+, I-J+ Ts cells in virgin and primed mice and the suppressor-inducer cells in GAT-primed mice were functionally and serologically distinct subsets. The studies used mAb and panning procedures to separate cell populations and inhibition of PFC cell responses to functionally define the activity of the cell populations. We used the following two mAb that were raised by immunizing rats with GAT-specific suppressor factors: 1248A4.10 (known to react with suppressor-inducer cells) and 1248A4.3, another reagent from the same fusion. Lyt-1+ cells from virgin spleens contained Ts cells that were A4.10-, A4.3+ and no suppressor-inducer T cells, whereas Lyt-1+ cells from GAT-primed spleens contained Ts cells that were A4.10-, A4.3+ as well as A4.10+, A4.3- suppressor-inducer cells. Thus, the Lyt1+, I-J+ cell subset can be divided into two functionally and serologically distinct subsets, direct Ts cells (1248A4.3+), which suppress responses to GAT but not GAT-MBSA, and GAT-primed suppressor-inducer T cells (1248A4.10+).  相似文献   

14.
Although Leu-2+ (OKT8+) T cells activated in the mixed lymphocyte reaction (MLR) mediate both alloantigen-specific cytotoxicity and suppression of alloantigen-induced proliferation, it is not known whether these functions derive from a single cell type or phenotypically distinct cells. This study was undertaken to examine the alloantigen-specific cytolytic and suppressor potential of two subpopulations of Leu-2+ cells distinguishable from one another on the basis of their binding to the monoclonal antibody 9.3. Leu-2+, 9.3+ and Leu-2+, 9.3- populations were purified from peripheral blood, cultured for 7 days with autologous helper/inducer (Leu-3+) cells and allogeneic non-T cells, and reisolated before testing for cytotoxicity and suppression. All detectable alloantigen-specific cytolytic activity was confined to the Leu-2+, 9.3+ subpopulation. Killing by this subset was specific for the HLA-A and B (class I) major histocompatibility complex (MHC) antigens of the priming cell. By contrast, suppression of proliferation was mediated predominantly by the Leu-2+, 9.3- cells, and suppression by this subpopulation was specific for the HLA-DR (class II) MHC antigens of the priming cell. The development of suppression by Leu-2+, 9.3- cells was unaffected by cyclosporin A (CsA), an agent shown previously to block the development of cytolytic but not suppressor cells in MLR. Alloactivated Leu-2+, 9.3+ cells were slightly inhibitory of fresh MLR, but this effect as well as the development of cytolytic cells was completely abrogated by CsA. These results indicate that suppressor and cytolytic Leu-2+ T cells activated in MLR are derived from distinct precursors separable by antibody 9.3.  相似文献   

15.
CD27 is a disulfide-linked 120-kDa homodimer expressed on the majority of peripheral T cells at variable density that belongs to the recently defined nerve growth factor receptor family. mAb reactive with CD27 can either enhance or inhibit T cell activation, suggesting a crucial role in the process of T cell activation. We now show that CD27 is preferentially expressed on the CD45RA+CD45RO-CD29low subset of CD4 cells. CD27 expression on this subset is maintained for a prolonged period in culture after PHA activation. In contrast, CD45RA-CD45RO(+)-CD29high subset of CD4 cells express very low level of CD27, and its expression is lost within 2 wk after PHA activation. To further analyze the differential expression of CD27 on these reciprocal subsets of CD4 cells, we developed T cell clones by stimulating isolated CD4+CD45RA+ and CD4+CD45RO+ populations with PHA. T cell clones derived from cells originally CD45RA+ retained both CD45RA and CD27 expression, whereas T cell clones derived from cells originally CD45RO+ were CD45RA- and CD27-. In functional assays, IL-4 production could only be induced in CD45RA-CD27- CD4 clones by stimulation with PMA and ionomycin. Four of six CD45RA+ CD4 clones had suppressor activity in PWM-driven IgG synthesis, whereas five of six CD45RA- CD4 clones had helper activity. Of interest, the suppressor activity of CD45RA+CD27+ clones was partially blocked by pretreatment with anti-CD27 mAb (1A4). Anti-1A4 pretreatment of these T cell clones resulted in elevation of intracellular cAMP levels. Thus, CD27 appears to play a role in the function of CD45RA+CD27+ CD4 cells, and may be involved in suppressor activity of these cells at least in part via its effects on cAMP production.  相似文献   

16.
As previously reported, the inability of cord blood T cells to produce IL2 in the autologous mixed lymphocyte reaction (AMLR) could be recovered by the treatment of stimulator non-T cells with interferon-gamma (IFN-gamma) and of the AMLR with exogenous IL2. In the present study, we showed that addition of untreated autologous cord blood T cells to the above-mentioned AMLR abrogated the IL2 production in a dose-dependent manner, suggesting active suppression by the untreated T cells because untreated cord blood T cells did not consume IL2. Suppressor activity was abrogated by the treatment of cord blood T cells with monoclonal anti-CD3 antibody plus complement or with monoclonal anti-CD45R (Leu 18) antibody, but not by the treatment with monoclonal anti-CD4 antibody and/or anti-CD8 antibody plus complement. These data showed that the cord blood suppressor T cells were CD3+4-8-45R+. This suppressor activity also disappeared by culturing with rIL2 for 8 hr. As the frequency of CD45R+ cord blood T cells was comparable to that of CD45R+ adult T cells and was minimally affected by the IL2 treatment, functional modulation of CD45R+ suppressor T cells by IL2 is suggested. Moreover, in spite of the inhibitory effect of anti-CD45R antibody on the suppressor activity, IL2 production was not induced merely by addition of anti-CD45R antibody directly to the responder cells in AMLR. Taken together, these data suggest the requirement of exogenous IL2 for IL2 production in that IL2-producing-precursor T cells themselves should be stimulated by IL2 in addition to the modulation of CD45R+ suppressor T cells by IL2.  相似文献   

17.
Human T lymphocytes bearing the cell surface antigen T4 are functionally heterogeneous, exerting helper/inducer, suppressor-inducer, suppressor-effector, and cytotoxic activities. Other cell surface antigens with a more restricted expression may help separate T4+ lymphocytes into functionally distinct subsets. This report describes the regulatory functions of T4+ lymphocytes fractionated by the monoclonal antibody 5/9, which detects a cell surface antigen present on 50-60% of T4+ lymphocytes. The results indicate that both 5/9+ and 5/9- T4 subsets contain helper/inducer and suppressor-inducer cells. Suppressor-effector activity, however, is found predominantly within the 5/9+ T4 subset. The 5/9 antibody thus identifies the suppressor-effector subset of T4+ lymphocytes, although it does not distinguish between T4+ cells with or without helper/inducer and suppressor-inducer functions.  相似文献   

18.
In pulmonary sarcoidosis, the marked expansion of CD4+ (helper/inducer) T cells in the alveolar structures of the lung is maintained by local IL-2 release by activated CD4+ HLA-DR+ T cells without concomitant expansion and activation of CD8+ (suppressor/cytotoxic) T cells, suggesting that sarcoid may be associated with a generalized abnormality of CD8+ T cells. Consistent with this concept, evaluation of the expression of the IL-2R on fresh lung T cells from individuals with active sarcoidosis demonstrated that 7 +/- 1% of sarcoid lung CD4+ T cells are spontaneously expressing the IL-2R compared with only 1 +/- 1% lung CD8+ T cells (p less than 0.01). However, stimulation of purified sarcoid blood CD8+ T cells with the anti-T3/TCR complex mAb OKT3 was followed by the normal expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). In addition, lung sarcoid CD8+ T cells responded to OKT3 similarly to normal lung CD8+ T cells and to autologous blood CD8+ T cells as regards expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). Finally, using CD4+ cells activated with allogenic Ag to induce, in coculture, fresh autologous CD8+ cells to suppress proliferation of fresh autologous CD4+ cells to the same Ag, sarcoid CD8+ T cells suppressed CD4+ cell proliferation in a normal fashion (p greater than 0.1). These results demonstrate that sarcoid CD8+ (suppressor/cytotoxic) T cells are competent to respond to a proliferation signal normally and can be induced to normally suppress CD4+ T cell proliferation to Ag, suggesting that the expansion of activated CD4+ T cells in pulmonary sarcoidosis is not due to a generalized abnormality of CD8+ T cells or of their suppressor T cell function.  相似文献   

19.
Majority of human newborn CD4+ lymphocytes were suppressor-inducer and had a CD45RA marker, the levels of CD4+Leu8- lymphocytes with helper function were markedly reduced in neonatal blood compared with that of normal adults. Decreased levels of CD8+ lymphocytes in neonate associated with low level of precursors and effectors of allocytotoxic T cells (CD8+CD11b-) and suppressor lymphocytes (CD8+CD11b+).  相似文献   

20.
The accumulation of mononuclear cells at sites of chronic inflammation is dependent on a number of factors including localized adherence of lymphocytes to vascular endothelial cells (EC), cytokine-mediated increased adhesiveness of endothelium, chemotactic factors and endothelial permeability. The present study investigates two of the above attributes of lymphocyte-EC interaction: namely, the ability of maturationally distinct subpopulations of human T lymphocytes to adhere to vascular EC and to increase vascular endothelial permeability to macromolecules in an in vitro model. Thus, human T lymphocytes were separated into CD4+ CD8-helper/inducer, CD4- CD8+ cytotoxic/suppressor, CD29+ CD45RA- CD45RO+ memory, and CD29- CD45RA+ CD45RO- naive/virgin T subpopulations, were activated with PHA and PMA, and then examined for their adherence to EC and also for their effect on endothelial permeability. Upon activation, cells within each of the above four subpopulations exhibited increased adherence to EC. In contrast, resting CD29+ CD45RA- CD45RO+ memory T lymphocytes exhibited two to three times greater ability to adhere to EC than their CD29- CD45RA+ CD45RO- naive/virgin counterparts. Consistent with their increased adherence to EC, CD29+ CD45RO+ memory T lymphocytes, when activated, significantly increased endothelial permeability to albumin. Although activated CD45RA+ naive T lymphocytes exhibited increased adherence to EC, these cells failed to increase significantly endothelial permeability. Similar to their polyclonal counterparts, Ag-specific CD4+ CD29+ CD45RO+ T cell clones, but not their actively released mediators, also increased endothelial permeability via a noncytolytic mechanism(s). This ability of CD29+ CD45RO+ memory T lymphocytes to augment endothelial permeability may facilitate their transendothelial migration into extravascular space. These observations may provide additional insights into molecular mechanism(s) underlying pathophysiology of localized chronic inflammatory responses in general and more specifically selective accumulation of CD29+/CD45RO+ memory T lymphocytes at sites of chronic inflammation such as rheumatoid synovium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号