首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S M Yu  W S Tzou  W S Lo  Y H Kuo  H T Lee  R Wu 《Gene》1992,122(2):247-253
Four alpha-amylase-encoding cDNA (alpha Amy-C) clones were isolated from a cDNA library derived from poly(A)+RNA of gibberellic acid (GA3)-treated rice aleurone layers. Nucleotide sequence analysis indicates that the four cDNAs were derived from different alpha Amy genes. Expression of the individual alpha Amy gene in germinating seeds and cultured suspension cells of rice was studied using gene-specific probes. In germinating seeds, expression of the alpha Amy genes is positively regulated by GA3 in a temporally coordinated but quantitatively distinct manner. In cultured suspension cells, in contrast, expression of the alpha Amy genes is negatively and differentially regulated by sugars present in the medium. In addition, one strong and one weak carbohydrate-starvation-responsive alpha Amy genes have been identified. Interactions between the promoter region (HS501) of a rice alpha Amy gene and GA3-inducible DNA binding proteins in rice aleurone cells were also studied. A DNA mobility-shift assay showed that the aleurone proteins interact with two specific DNA fragments within HS501. One fragment is located between nt -131 to -170 and contains two imperfect directly repeated pyrimidine elements and a putative GA3-response element. The other fragment is located between nt -92 to -130 that contains a putative enhancer sequence. The interactions between aleurone proteins and these two fragments are sequence-specific and GA-responsive.  相似文献   

2.
3.
4.
5.
Transgenic seeds of rice (Oryza sativa L.) were used to investigate temporal, spatial, and hormonal regulation of a rice [alpha]-amylase gene, RAmy1A. Two overlapping segments of the RAmy1A promoter were fused to the coding region of the bacterial reporter gene, gusA. The resulting promoter-gusA fusions, pE4/GUS (-232 to +31) and pH4/GUS (-748 to +31), were used separately to transform rice protoplasts. [beta]-Glucuronidase (GUS) activity was detected in germinated transgenic seeds, although the two constructs showed no significant difference in timing or location of GUS expression. Both constructs first expressed GUS in the scutellar epithelium and then in the aleurone layer. Aleurone expression of GUS activity was strongly induced when embryoless half-seeds were treated with gibberellic acid. GUS expression in the aleurone layer was also suppressed by abscisic acid. These results indicate that the 5[prime] regulatory region from -232 to +31 is sufficient for temporal, spatial, and hormonal regulation of RAmy1A gene expression.  相似文献   

6.
Isolated rice embryos were used to investigate the regulatory effects of endosperm extracts and pure sugars on the expression of alpha-amylase gene RAmy3D and a sucrose synthase gene homologous to the maize isozyme Ss2. The high-level expression of RAmy3D in the scutella of isolated embryos could be inhibited by a variety of sugars as well as endosperm extracts from germinated rice grains. Glucose, at a concentration of 250 mM, was most effective in repressing RAmy3D mRNA accumulation. Furthermore, this repression was reversible. Interestingly, RAmy3D repression was always accompanied by the induction of sucrose synthase gene expression. These results support a model in which the expression of alpha-amylase and sucrose synthase genes in the rice scutellum are counter-regulated by the influx of sugars from the endosperm.  相似文献   

7.
We have determined the nucleotide sequences of Amy32b, a type A alpha-amylase gene, and of the gene for aleurain, a thiol protease closely related to mammalian cathepsin H. Both are expressed in barley aleurone cells under control of the plant hormones gibberellic acid and abscisic acid, but only aleurain is expressed at high levels in other barley tissues. Sequence analysis indicates that the 5' end of the aleurain gene, comprising 3 exons and 2 introns, may have become associated with the remainder of the gene, encoding the protease domain of the protein, by some sort of recombination event. This 5' domain of the gene is very G + C-rich and is flanked by inverted repetitive sequences. We found two different groups of homologous sequence elements. The first group consists of four blocks of sequences conserved in the same spatial arrangement in both genes; these are arranged at similar intervals upstream from the Amy32b TATA box and from a TATA box present in intron 3 of aleurain, outside of the 5' domain and upstream from the protease domain. A part of two of these conserved sequences is similar to the core sequence of certain enhancer elements characterized from mammalian cells. The second group of homologous elements is present in the upstream region of both genes. We speculate that these conserved sets of sequences may have some role in either the tissue specificity of expression of the genes or in some part of the hormonal regulation imposed on them.  相似文献   

8.
We isolated and identified 10 alpha-amylase isoforms by using beta-cyclodextrin Sepharose affinity column chromatography and two-dimensional polyacrylamide gel electrophoresis from germinating rice (Oryza sativa L.) seeds. Immunoblots with anti-alpha-amylase I-1 and II-4 antibodies indicated that 8 isoforms in 10 are distinguishable from alpha-amylase I-1 and II-4. Peptide mass fingerprinting analysis showed that there exist novel isoforms encoded by RAmy3B and RAmy3C genes. The optimum temperature for enzyme reaction of the RAmy3B and RAmy3C coding isoforms resembled that of alpha-amylase isoform II-4 (RAmy3D). Furthermore, complex protein polymorphism resulted from a single alpha-amylase gene was found to occur not only in RAmy3D, but also in RAmy3B.  相似文献   

9.
The B-hordeins are the major group of prolamin storage proteins in barley (Hordeum vulgare L.) and they are encoded by a small multigene family that is expressed specifically in the developing endosperm. We report the complete nucleotide sequence of a clone of one B-hordein gene (pBHR184). The cloned gene contains no introns and belongs to the B1 sub-family of B-hordein genes. Comparison of the 5'-flanking sequences of pBHR184 with those of related S-rich prolamin genes from wheat shows that several short sequences within 600 bp upstream of the translation initiation codon are strongly conserved. A sequence that is conserved at around -300 bp in the S-rich prolamins is also conserved at similar locations in genes encoding the two major classes of maize prolamin (the Z19 and Z21 zeins) and appears to be unique to prolamin genes. We discuss the possible role of this '-300 element' in the control of gene expression in the developing cereal endosperm.  相似文献   

10.
Expression of α-amylase genes in rice is induced not only by sugar starvation and gibberellin (GA) but also by O2 deficiency. Promoters of two rice α-amylase genes, αAmy3 and αAmy8, have been shown to direct high-level production of recombinant proteins in rice suspension cells and germinated seeds. In the present study, we modified the cis-acting DNA elements within the sugar/GA response complex (SRC/GARC) of αAmy8 promoter. We found that addition of a G box and duplicated TA box leads to high-level expression of αAmy8 SRC/GARC and significantly enhances αAmy8 promoter activity in transformed rice cells and germinated transgenic rice seeds. We also show that these modifications have drastically increased the activity of αAmy8 promoter in rice seedlings under hypoxia. Our results reveal that the G box and duplicated TA box may play important roles in stimulating promoter activity in response to hypoxia in rice. The modified αAmy8 promoter was used to produce the recombinant human epidermal growth factor (hEGF) in rice cells and hypoxic seedlings. We found that the bioactive recombinant hEGF are stably produced and yields are up to 1.8 % of total soluble protein (TSP) in transformed rice cells. The expression level of synthetic hEGF containing preferred rice codon usage comprises up to 7.8 % of TSP in hypoxic transgenic seedlings. Our studies reveal that the modified αAmy8 promoter can be applicable in establishing a novel expression system for the high-level production of foreign proteins in transgenic rice cells and seedlings under hypoxia.  相似文献   

11.
Expression of two genes in the -amylase gene family is controlled by metabolic regulation in rice cultured cells. The levels of RAmy3D and RAmy3E mRNAs in rice cultured cells are inversely related to the concentration of sugar in the culture medium. Other genes in the rice -amylase gene family have little or no expression in cultured cells; these expression levels are not controlled by metabolic regulation. A RAmy3D promoter/GUS gene fusion was metabolically regulated in the transgenic rice cell line 3DG, just as the endogenous RAmy3D gene is regulated. An assay of GUS enzyme activity in 3DG cells demonstrated that RAmy3D/GUS expression is repressed when sugar is present in the culture medium and induced when sugar is removed from the medium. The 942 bp fragment of the RAmy3D promoter that was linked to the coding region of the GUS reporter gene thus contains all of the regulatory sequences necessary for metabolic regulation of the gene.  相似文献   

12.
13.
14.
A novel subclass of dehydrin genes, homologous to the Raphanus sativus late embryogenesis-abundant (LEA) protein (RsLEA2) and the Arabidopsis thaliana dehydrin, was isolated from Brassica juncea and Brassica napus, here designated BjDHN1 and BnDHN1, respectively. The cDNA of BjDHN1 and BnDHN1 genes share 100% nucleotide identity. The encoded protein is predicted to consist of 183 amino acid residues (molecular mass of 19.2 kDa and pI of 7.0). It shares 85.3% and 65.4% amino acid sequence identity with the RsLEA2 and Arabidopsis dehydrin, respectively. This Brassica dehydrin also features a "Y(3)SK(2)" plant dehydrin structure. Expression analysis indicated that the Brassica dehydrin gene is expressed at the late stages of developing siliques, suggesting that the gene expression may be inducible by water-deficit. Analysis of gene expression also indicated that in germinating seeds the gene expression was inducible by low temperature. Seed germination under low temperature was compared between B. juncea and B. napus. The results showed that B. juncea seeds germinated faster than B. napus seeds. Expression of Brassica dehydrin gene was also examined as a function of seed germination under low temperature.  相似文献   

15.
16.
17.
Genomic Characterization of a Testis-Specific TFIIS (TCEA2) Gene   总被引:1,自引:0,他引:1  
  相似文献   

18.
We previously identified a cluster of hematopoietic serine protease genes on chromosome 14 at band q11.2. This cluster contains the cathepsin G gene and the two related cathepsin G-like genes CGL-1 and CGL-2. The CGL-1 gene is identical with the cytotoxic T cell serine protease CSP-B (also called SECT, and in mice, CCP1, granzyme B, or CTLA-1). In this report, we determined that CGL-2 is identical with a recently described gene called h-CCPX. The coding sequences of CG, CGL-1, and CGL-2 are 65-75% identical at the DNA level. The intervening sequences are much less conserved, except for introns 3 of the CGL-1 and CGL-2 genes, which are 93% identical. Each of the genes has the same overall organization, with 5 exons and 4 introns, very short 5' untranslated regions, and identical splice phases for all of the introns. Cathepsin G is expressed at high levels in promyelocytes/promonocytes, and CGL-1/CSP-B is expressed at high levels in activated cytolytic T cells, lymphokine-activated killer (LAK), and natural killer (NK) cells. CGL-2/h-CCPX is expressed at much lower levels in activated peripheral blood lymphocytes, LAK and NK cells. To begin to define the regulatory elements that target expression of each of these genes to their specific lineages at specific times, the 5' flanking region of each gene was sequenced. The 5' flanking regions are minimally related and have few conserved consensus elements. Further experiments will be required to determine the critical cis-acting regulatory sequences required for tissue- and development-specific expression of each of these genes.  相似文献   

19.
Summary A plasmid containing two marker genes for expression in plants was constructed. This 16 kb vector, pCT1T3, contains an intact nopaline synthase gene and a chimaeric gene consisting of the promoter and terminator regions from cauliflower mosaic virus gene VI and a structural gene, aminoglycoside phosphotransferase (APH(3′)II), from the bacterial transposon Tn5. After transformation of tobacco mesophyll protoplasts with this plasmid, several kanamycin-resistant transformants were obtained. Intensive studies on the drug tolerance of growth and differentiation of the transformants showed that the chimaeric gene was stably expressed. Of 17 independent transformants, 3 (about 18%) expressed the two marker genes, regardless of the state of differentiation, as did individual plants regenerated from the same callus. Multiple copies of the inserted DNA were found in some transformants. Viable seeds were produced by 12 out of 15 independent transformants. Seeds obtained by self-pollination were germinated on medium containing kanamycin sulphate. With the exception of one clone, resistant seedlings with green leaves and sensitive seedlings with white leaves were found to segregate in a 3:1 ratio. This suggests that the inheritance of the inserted gene is Mendelian. A reciprocal cross between the transformants and wild-type tobacco also showed nuclear transmission of the APH(3′)II gene. This was consistently maintained in a subclone of the same transformant derived from the same callus line. Stable inheritance of the single dominant character was also seen among seeds formed in several different flower pods of the same individual plants. Two clones were also found to synthesize nopaline in addition to expressing APH(3′)II. Analysis of the progeny obtained by self-crosses of such transformants revealed the simultaneous expression of these two enzymes, indicating that the two marker genes are linked on the same chromosome.  相似文献   

20.
Lim Y  Lee SM  Kim M  Lee JY  Moon EP  Lee BJ  Kim J 《Gene》2002,286(2):291-297
Analysis of the complete genomic structure of the human ribosomal protein S3 (rpS3) gene revealed the presence of a functional U15b snoRNA gene in its intron. Human ribosomal protein S3 (rpS3) gene of 6115 bp long has been identified to contain six introns and seven exons in this study. The first and fifth introns of human S3 gene contain functional U15 snoRNA genes. Although Xenopus and Fugu counterparts also have six introns and seven exons, S3 gene of Fugu contains two functional U15 snoRNAs in the fourth and sixth introns and two pseudo genes for U15 snoRNAs in the first and fifth introns. In Xenopus S1 gene encoding ribosomal protein S3, however, three of its six introns contain U15 snoRNA gene sequence. Sequence comparison of the U15 genes from Xenopus, Fugu and human revealed that the regions involved in binding to 28S rRNA and the consensus sequence (C, D and D' boxes) for snoRNAs are highly conserved among those genes from these three species. Human U15a and U15b RNAs which are derived from the first and the fifth introns, respectively, have been identified to be functional by microinjection of human U15a and U15b snoRNAs into Xenopus oocyte. Northern blot and primer extension analyses confirm that human U15b snoRNA is expressed in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号