首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examined behavioral responses of the field cricket Gryllus bimaculatus to tactile stimuli to the antennae. Three stimulants of similar shape and size but different textures were used: a tibia from the hunting spider Heteropoda venatoria (potential predator), a tibia from the orb-web spider Argiope bruennichi (less likely predator), and a glass rod. Each stimulus session comprised a first gentle contact and a second strong contact. The evoked behavioral responses were classified into four categories: aversion, aggression, antennal search, and no response. Regardless of the stimulants, the crickets exhibited antennal search and aversion most frequently in response to the first and second stimuli, respectively. The frequency of aversion was significantly higher to the tibia of H. venatoria than to other stimulants. The most striking observation was that aggressive responses were exclusive to the H. venatoria tibia. To specify the hair type that induced aggression, we manipulated two types of common hairs (bristle and fine) on the tibia of the predatory spider. When bristle hairs were removed from the H. venatoria tibia, aggression was significantly reduced. These results suggest that antennae can discriminate the tactile texture of external objects and elicit adaptive behavioral responses.  相似文献   

3.
We have developed a new set of 27 polymorphic markers for each of two cricket species, Gryllus bimaculatus and Gryllus campestris. Initially, 14 published G. bimaculatus loci were tested in G. campestris; however, only five loci were polymorphic. Therefore, we isolated an additional 50 new microsatellite loci from G. bimaculatus and tested these in both species. In a minimum of 20 individuals, 27 of the new loci were polymorphic in G. bimaculatus and 25 in G. campestris.  相似文献   

4.
ABSTRACT. The precision of auditory lateralization was determined behaviourally for the cricket, Gryllus bimaculatus L. A forced-choice Y-maze test was devised in which the cricket, on entering the test arena, could not — in contrast to free phonotactic approaches — change its walking direction until after it had passed through a narrow wire-mesh tunnel. For a sound frequency of 4.7 kHz, matching the species' calling frequency, the minimum audible angle for correct side discrimination was 15°. For stimulus angles smaller than 15° from the longitudinal body axis, the crickets walked randomly to either side; stimulus angles greater than 25° resulted in all crickets turning correctly. These data reveal a sharply tuned lateral sensitivity for the auditory pathway of crickets, with an optimum at the species' calling frequency of 4.7 kHz (when compared with 3.5 and 6.0 kHz). The results for the forced-choice test are compared with the walking pattern during free phonotactic approaches, in order to determine the possible strategy underlying the acoustic orientation behaviour of the cricket.  相似文献   

5.
In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into l-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.  相似文献   

6.
7.
1.  The ecdysial growth of cercal filiform hairs was investigated in the cricketGryllus bimaculatus. The length of hairs varied from 40 to 500 m in the 1st, from 40 to 650 m in the 3rd and from 30 to 800 m in the 5th instar nymphs (Fig. 1). Hemimetabolous development causes both hair growth and the appearance of new hairs at each ecdysis (Figs. 2, 3). The newly acquired hairs were shorter than 200 m in every case (Fig. 4).
2.  Velocity thresholds of cercal sensory interneurons (CSIs) to sinusoidal air-currents were measured in 3rd instar nymphs (Fig. 5 A, B, C). CSIs 8-1 (medial giant interneuron: MGI) and 9-1 (lateral giant interneuron: LGI) showed threshold curves of acceleration sensitivity similar to those in adults. The thresholds for CSIs 8-1 and 9-1 were on the average higher in nymphs than in adults. The threshold curves for the two velocity-sensitive CSIs 10-2 and 10-3 were similar for nymphs and adults.
3.  Velocity thresholds of cercal filiform sensilla were measured in 3rd instar nymphs (Fig. 6). In spite of the small size of nymphal hairs, the most sensitive ones showed the same sensitivity as did the long 1000 m hairs of the adult.
4.  The filiform hairs in 3rd instar nymphs were supported by a weaker spring than in adults (Fig. 7). Relative stiffness was about 50% of that in the long hairs in adults, but not much different than that in the short hairs.
5.  Based on a theoretical estimation of hair motion, the threshold angle of a filiform sensillum in the 3rd instar nymph was calculated (Fig. 9). Threshold angles of the long sensilla seemed to be unchanged throughout hemimetabolous development.
This paper is dedicated to the memory of the late professor Hiroshi Ikeda, Biological Institute, Faculty of General Education, Ehime University, Matsuyama, Japan  相似文献   

8.
The location of the reproductive timer for the post-copulatory, time-fixed, sexually refractory stage was investigated in the male cricket Gryllus bimaculatus. This stage was defined as the interval between spermatophore protrusion and recommencement of copulation or a calling song. To inactivate the central nervous system locally and reversibly, different body regions were cooled to 10°C for 20-30 min after spermatophore protrusion. A behavioural test then measured the duration of the refractory stage after males recovered from cooling. Males with the head, thorax and anterior abdomen cooled did not show a lengthening of that stage. In contrast, males with the entire abdomen or even the posterior abdominal segments containing only the 6th and terminal (7th-11th) abdominal ganglia showed a lengthening of the refractory stage up to, but not exceeding, the cooling duration. When 20-min cooling was interposed twice after spermatophore protrusion, the refractory stage was lengthened by about 40 min, indicating that interposed cooling did not reset the timer. These results are in agreement with our previous hypothesis that the reproductive timer for the refractory stage in the male cricket is located in the posterior abdominal ganglia, possibly within the terminal abdominal ganglion.  相似文献   

9.
An air puff stimulus evoked the swimming of an intact cricket, Gryllus bimaculatus, placed on a water surface. When only the forelegs were intact, swimming was initiated frequently, but flying was never initiated. On the other hand, flying was initiated when only the middle legs or hindlegs were intact. Therefore, the sensory inputs from the forelegs are important in the initiation of swimming and for the inhibition of flying when on the water surface. After bilateral ablation of the middle legs and hindlegs, the bilateral segments of the remaining forelegs were sequentially ablated from the distal area to the proximal area of the legs. After bilateral ablation of all tarsomeres, the relative occurrence of swimming decreased and that of flying increased. After the following ablation of the bilateral tibiae, most insects responded to an air puff stimulus by flying. Experiments performed after coating the leg surface with enamel resulted in almost the same behavioral change as that observed in the ablation experiments. These results suggest that the sensory receptors responsible for the initiation of swimming and the inhibition of flying are mainly located on the surface of the tibia and the tarsus of the forelegs. The behavioral change between swimming and walking was also studied using methylcellulose solutions of various viscosities. On the methylcellulose solution, the relative occurrence of walking in the crickets increased with an increase in the viscosity of the solution.  相似文献   

10.
The location of the reproductive timer for the post-copulatory, time-fixed, sexually refractory stage was investigated in the male cricket Gryllus bimaculatus. This stage was defined as the interval between spermatophore protrusion and recommencement of copulation or a calling song. To inactivate the central nervous system locally and reversibly, different body regions were cooled to 10 degrees C for 20-30 min after spermatophore protrusion. A behavioural test then measured the duration of the refractory stage after males recovered from cooling. Males with the head, thorax and anterior abdomen cooled did not show a lengthening of that stage. In contrast, males with the entire abdomen or even the posterior abdominal segments containing only the 6th and terminal (7th-11th) abdominal ganglia showed a lengthening of the refractory stage up to, but not exceeding, the cooling duration. When 20-min cooling was interposed twice after spermatophore protrusion, the refractory stage was lengthened by about 40 min, indicating that interposed cooling did not reset the timer. These results are in agreement with our previous hypothesis that the reproductive timer for the refractory stage in the male cricket is located in the posterior abdominal ganglia, possibly within the terminal abdominal ganglion.  相似文献   

11.
Transgenic insects have been artificially produced to study functions of interesting developmental genes, using insect transposons such as piggyBac. In the case of the cricket, however, transgenic animals have not yet been successfully artificially produced. In the present study, we examined whether the piggyBac transposon functions as a tool for gene delivery in embryos of Gryllus bimaculatus. We used either a piggyBac helper plasmid or a helper RNA synthesized in vitro as a transposase source. An excision assay revealed that the helper RNA was more effective in early Gryllus eggs to transpose a marker gene of eGFP than the helper plasmid containing the piggyBac transposase gene driven by the G. bimaculatus actin3/4 promoter. Further, only when the helper RNA was used, somatic transformation of the embryo with the eGFP gene was observed. These results suggest that the piggyBac system with the helper RNA may be effective for making transgenic crickets.  相似文献   

12.
In the cricket ear, sound acts on the external surface of the tympanum and also reaches the inner surface after travelling in at least three pathways in the tracheal system. We have determined the transmission gain of the three internal sound pathways; that is, the change of amplitude and phase angle from the entrances of the tracheal system to the inner surface of the tympanum. In addition, we have measured the diffraction and time of arrival of sound at the ear and at the three entrances at various directions of sound incidence. By combining these data we have calculated how the total driving force at the tympanum depends on the direction of sound. The results are in reasonable agreement with the directionality of the tympanal vibrations as determined with laser vibrometry.At the frequency of the calling song (4.7 kHz), the direction of the sound has little effect on the amplitudes of the sounds acting on the tympanum, but large effects on their phase angles, especially of the sound waves entering the tracheal system at the contralateral side of the body. The master parameter for causing the directionality of the ear in the forward direction is the sound wave entering the contralateral thoracic spiracle. The phase of this sound component may change by 130–140° with sound direction. The transmission of sound from the contralateral inputs is dominated by a very selective high-pass filter, and large changes in amplitude and phase are seen in the transmitted sounds when the sound frequency changes from 4 to 5 kHz. The directionality is therefore very dependent on sound frequency.The transmission gains vary considerably in different individuals, and much variation was also found in the directional patterns of the ears, especially in the effects of sounds from contralateral directions. However, the directional pattern in the frontal direction is quite robust (at least 5 dB difference between the 330° and 30° directions), so these variations have only little effect on how well the individual animals can approach singing conspecifics.Abbreviations CS contralateral spiracle - CT contralateral tympanum - IS ipsilateral spiracle - IT ipsilateral tympanum - P the vectorial sum of the sounds acting on the tympanum  相似文献   

13.
Olfactory learning in insects is a useful model for studying neural mechanisms underlying learning and memory, but memory storage capacity for olfactory learning in insects has not been studied. We investigate whether crickets are capable of simultaneously memorizing seven odour pairs. Fourteen odours were grouped into seven A/B pairs, and crickets in one group were trained to associate A odours with water reward and B odours with saline punishment for all the seven pairs. Crickets in another group were trained with the opposite stimulus arrangement. Crickets in all the groups exhibited significantly greater preference for the odours associated with water reward for all the seven odour pairs. We conclude that crickets are capable of memorizing seven odour pairs at the same time.  相似文献   

14.
Abstract .1. To benefit from the putative genetic advantages of multiple mating with multiple partners, female insects would be expected to select against mating with the same male twice when another potential partner is present.
2. This paper examined whether female Gryllus bimaculatus (Gryllidae) preferred to mate with a novel partner over a partner with which they had mated previously.
3. Females presented with a choice preferred significantly to mate with novel males over previously mated males, and preferred to do so even when the potentially confounding influence of male–male competition was controlled for.
4. The potential advantages of such a mate choice pattern and possible ways in which the choice is mediated are discussed.  相似文献   

15.
Size preference for artificial refuges was examined in the adult field cricket Gryllus bimaculatus under laboratory conditions. Blinded crickets were placed individually in a container consisting of a circular arena and six different-sized artificial refuges (triangular tent-like shelters). The crickets were allowed to walk freely inside the container for a constant period. Size preference was evaluated by determining cumulative stay period in each shelter. When the depth of the shelters varied from 60 to 160 mm at 20-mm intervals, and the width was fixed at 30 mm, both males and females tended to remain in relatively longer shelters (≥ 140 mm). Females, in particular, exhibited a distinct preference for the longest shelter (160 mm). The width of the shelters was then varied from 20 to 40 mm at 4-mm intervals, and the depth was fixed at 100 mm. Although males did not show selectivity to specific shelters, females tended to select a shelter with a particular width (32 mm). These results suggest that adults of G. bimaculatus have size preferences for refuges under blinded conditions. However, the preferences may involve sexual differences as well.  相似文献   

16.
17.
The flow of enzymes, the ratio of bound to unbound enzymes, and their inactivation in the cricket Gryllus bimaculatus was studied. The digestive enzymes are forced forward into the crop by caecal contraction and then they are mixed with freshly chewed food and saliva, forming a crop‐chyme. This chyme is blended by crop peristalsis, and periodic opening of the preproventricular valve (PPV) allows posterior movement into the proventriculus and further into the midgut. The contraction of the crop is modulated by Grybi‐AST and Grybi‐SK peptides, which are partially secreted by the caecal endocrine cells. Most of the aminopeptidase and the four disaccharidases examined are membrane bound (62–80%); the remaining (20–38%) as well all trypsin, chymotrypsin, lipase, and amylase are secreted free into the caecal lumen. Cricket trypsin loses only 30% of its activity in 4 h and very little thereafter. The presence of digestive products in the lumen appears to retard further trypsin autolysis. Cricket trypsin digests 42% of the chymotrypsin, 37% of the lipase, and 45% of the amylase in the caecal fluids over 24 h in vitro no significant difference. Without Ca ion amylase was almost completely digested. About 50% of the membrane bound and free aminopeptidase was digested in the caecal lumen, and about 30–38% of the bound and free maltase. This loss of digestive enzyme activity is possible, because enzyme secretion rates are high, the unbound enzymes are effectively recycled, and the time of nutrient passage is short.  相似文献   

18.
The deflection sensitivities of cercal filiform hairs of the cricket, Gryllus bimaculatus, were determined by direct measurement. The tangential velocity of deflecting hair shafts in response to stimulus air motion was measured in situ by a laser-Doppler velocimeter with surface scattering of the shaft. The velocity of the stimulus air motion in a small wind tunnel was calibrated by the same velocimeter with smoke from a joss-stick. The mobility of the hair was obtained from former measurements with reference to the latter calibration of the single apparatus. A Gaussian white noise signal was employed as a stimulus waveform, and the stimulus-response transfer function was calculated through a cross-correlation method, which provides greater precision and wider frequency for a longer period of measurement. The mobility of hair was expressed in deflection amplitudes and phase shifts in reference to the velocity sinusoid of a stimulus at various frequencies. The measurements established the following conclusions. The wind receptor hairs comprise an array of mechanical band-pass filters whose best frequencies are inversely proportional to the length. The motion dynamics of the wind-receptor hairs have strong damping. Accepted: 24 February 1998  相似文献   

19.
The waveform and the free-running period of circadian rhythms in constant conditions are often modulated by preceding lighting conditions. We have examined the modulatory effect of variable length of light phase of a 24h light cycle on the ratio of activity (alpha) and rest phase (rho) as well as on the free-running period of the locomotor rhythm in the cricket Gryllus bimaculatus. When experienced the longer light phases, the alpha/rho-ratio was smaller and the free-running period was shorter. The magnitude of changes in alpha/rho-ratio was dependent on the number of cycles exposed, while the free-running period was changed by a single exposure, suggesting that there are separate regulatory mechanisms for the waveform and the free-running period. The neuronal activity of the optic lobe showed the alpha/rho-ratio changing with the preceding photoperiod. When different photoperiodic conditions were given to each of the two optic lobe pacemakers, the alpha/rho-ratio of a single pacemaker was rather intermediate between those of animals treated with either of the two conditions. These results suggest that the storage of the photoperiodic information occurs at least in part in the optic lobe pacemaker, and that the mutual interaction between the bilateral optic lobe pacemakers is involved in the photoperiodic modulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号