首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J Krupinski  G G Hammes 《Biochemistry》1985,24(24):6963-6972
A rapid reconstitution procedure has been developed to insert deoxycholate-purified bacteriorhodopsin (bR) into asolectin vesicles. The procedure relies on the ability of the hydrophobic resin Bio-Beads SM-2 to remove octyl glucoside from a mixture of deoxycholate-purified bR, asolectin, and the detergent. Light-dependent acidification of the vesicle interior is observed with the reconstituted preparations as judged by the fluorescence quenching of an entrapped pH indicator, pyranine. Inhibition of proton pumping by the addition of LaCl3 to the external medium indicates that approximately 90% of the bR is oriented such that it pumps protons into the vesicles. Phase-lifetime spectrophotometry was used to study the relaxation processes associated with the intermediate in the photocycle of the reconstituted bR which absorbs at 410 nm. Amplitude spectra indicate that these absorbance changes are associated with the M intermediate in the bR photocycle. Two relaxation processes are observed. One is characterized by a relaxation time of approximately 4 ms and is independent of pH over the range 4.4-9.4. The longer relaxation time varies from 4 to 200 ms in the same pH range. By digitization of transients, which are observable when the actinic source is modulated at a low frequency, information about the dependence of the slower process on the light intensity and carbonyl cyanide m-chlorophenylhydrazone was obtained. The results can be interpreted in terms of two different forms of the M intermediate that decay on parallel kinetic paths. To explain the pH dependence of the decay rate, the slower decaying form must have three coupled protonation states, each with a different decay rate.  相似文献   

2.
We present phosphorus magnetic resonance (PhMR) spectra, relaxation rates, and chemical shifts for unsonicated and sonicated lecithins in aqueous dispersions and for egg lecithin in chloroform and methanol. Aqueous lecithin dispersions are characterized by long values for T1 and considerably shorter values for T2. Both of these values as well as the value of the linewidth change with sonication. Lecithin dispersions in methanol and chloroform have relaxation rates shorter than those seen for sonicated lecithin. We do not, at this time, present a detailed interpretation of these results. On an empirical level, however, since the relaxation rates are sensitive to the type of dispersion and possibly to the solvent, we are optimistic that they will be sensitive to structural changes involving the headgroup region.  相似文献   

3.
Dynamic Kerr effect measurements were performed with dilute aqueous suspensions of monodisperse spherical vesicles (~1μm diameter), isolated from the rod outer segment of bovine retina. A large birefringence, amounting to the specific Kerr constant of 10?3 esu, can be observed. When a sufficiently long duration pulse (1 s) is applied, the decay of birefringence can be represented by a single exponential profile, yielding a relaxation time of 100 ± 20 ms in 1 mM imidazole buffer. This is consistent with the rotatory relaxation time of these spherical membrane vesicles. When a short duration is applied, the birefringence increases more steeply and the decay profile contains several components. The slowest (terminal) relaxation time is 86 ± 15 ms and is due to the same process as the one observed in the slow pulse case.  相似文献   

4.
Vesicle suspensions of up to 5 % egg lecithin and 2.5 % cholesterol have been found to have no effect on the NMR relaxation times of 17O from water. Addition of 1–5 mM Mn2+ to an equimolar vesicle suspension of egg lecithin and cholesterol permitted resolution of the free induction decay into two exponential components, a fast one arising from the external water and a slow one arising from the intravesicular fluid. From the rates of relaxation the mean life time of the water molecules within the vesicles was calculated to be 1±0.1 ms at 22°C. The size of the vesicle was estimated from electron micrographs to be about 500 Å in diameter. These data yield an equilibrium water permeability, Pw, of about 8 μs−1 for the vesicle membranes. From the temperature dependence of Pw an activation energy of 12±2 kcal/mol was obtained. The longitudinal relaxation time (T1) of water within vesicles remained the same as in pure water.  相似文献   

5.
The transfer of pyrene between 1-acid glycoprotein, acethylcholinesterase and sonicated liposomes was used to monitor glycoprotein-protein interaction on the lipid bilayer. When a density solution of glycoprotein or protein labeled with pyrene was mixed with unlabeled suspension of free-phospholipid liposomes, or suspensions containing the complexes of glycoprotein-lipid, protein-lipid, or glycoprotein-protein-lipid, pyrene excimer fluorescence increased with a half-time of approximately 30–50 msec. Since the increase in excimer fluorescence indicates an increase in the microscope concentrations of pyrene, the observed fluorescence change reflects pyrene transfer. The half-times for the increase in excimer fluorescence were determined in the presence of glycoprotein and protein in the liposomes. On the basis of the determined half-times it was concluded that both, glycoprotein and protein are bound on the lipid bilayer. Our data also suggest that the thickness of the lipid bilayer is significantly changed in this case. The observation suggests strongly that the limiting step in the transfer of pyrene is not the dissociation of pyrene, but the uptake of the pyrene monomers by the lipid phase.  相似文献   

6.
7.
An alkaline suspension of light-adapted purple membrane exposed to continuous light showed a large absorption depletion at 580 nm and a small increase around 350 nm. We attribute this absorption change to an efficient photoconversion of bR570 into a photoproduct N (P,R350), which has a major absorption maximum between 550 and 560 nm but has lower absorbance than bR570. N was barely detectable at low pH, low ionic strength, and physiological temperature. However, when the thermal relaxation of N to bR570 was inhibited by increasing pH, increasing ionic strength, and decreasing temperature, its relaxation time could be as long as 10 s at room temperature. N is also photoactive; when it is present in significant concentrations, e.g., accumulated by background light, the flash-induced absorption changes of purple membrane suspensions were affected. Double-excitation experiments showed an M-like photoproduct of N,NM, with an absorption maximum near 410 nm and a much longer lifetime than M412. It may be in equilibrium with an L-like precursor NL. We suggest that N occurs after M412 in the photoreaction cycle and that its photoproduct NM decays into bR570. Thus, at high pH and high light intensity, the overall photoreaction of bR may be approximated by the two-photon cycle bR570----M412----N----(NL----NM)----bR570, whereas at neutral pH and low light intensity it can be described by the one-photon cycle bR570----M412----N----O640----bR570.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Pressure-jump experiments were performed on vesicles and liposomes of dimyristoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine following the time course of solution turbidity. For both lipids two relaxation effects were evaluated the time constants of which exhibit clear maxima at the midpoint of the phase transition. The time constants lie for vesicles in the 100 μs and 1 ms ranges and for liposomes in the 1 ms and 10 ms ranges. The processes are slightly faster for dimyristoyl phosphatidylcholine than for dipalmitoyl phosphatidylcholine. All relaxation times are concentration-independent. The time constant and amplitude behaviours indicate that all processes are cooperative in agreement with previous interpretations. It is demonstrated that cooperative units can be evaluated from the relaxation amplitudes. These are of the same order of magnitude as those obtained from static experiments. On the grounds of the present kinetic investigation we can state that the application of the linear Ising model to two-dimensional processes as attempted for the static lipid phase transition is inadequate.  相似文献   

9.
We have used flash spectroscopy and pH indicator dyes to measure the kinetics and stoichiometry of light-induced proton release and uptake by purple membrane in aqueous suspension, in cell envelope vesicles and in lipid vesicles. The preferential orientation of bacteriorhodopsin in opposite directions in the envelope and lipid vesicles allows us to show that uptake of protons occurs on the cytoplasmic side of the purple membrane and release on the exterior side.

In suspensions of isolated purple membrane, approximately one proton per cycling bacteriorhodopsin molecule appears transiently in the aqueous phase with a half-rise time of 0.8 ms and a half-decay time of 5.4 ms at 21 °C.

In cell envelope preparations which consist of vesicles with a preferential orientation of purple membrane, as in whole cells, and which pump protons out, the acidification of the medium has a half-rise time of less than 1.0 ms, which partially relaxes in approx. 10 ms and fully relaxes after many seconds.

Phospholipid vesicles, which contain bacteriorhodopsin preferentially oriented in the opposite direction and pump protons in, show an alkalinization of the medium with a time constant of approximately 10 ms, preceded by a much smaller and faster acidification. The alkalinization relaxes over many seconds.

The initial fast acidification in the lipid vesicles and the fast relaxation in the envelope vesicles are accounted for by the misoriented fractions of bacteriorhodopsin. The time constants of the main effects, acidification in the envelopes and alkalinization in the lipid vesicles correlate with the time constants for the release and uptake of protons in the isolated purple membrane, and therefore show that these must occur on the outer and inner surface respectively. The slow relaxation processes in the time range of several seconds must be attributed to the passive back diffusion of protons through the vesicle membrane.  相似文献   


10.
L A Drachev  A D Kaulen 《FEBS letters》1992,313(3):248-250
The photocycles of the wild-type bacteriorhodopsin and the D96N mutant were investigated by the flash-photolysis technique. The M-intermediate formation (400 nm) and the L-intermediate decay (520 nm) were found to be well described by a sum of two exponents (time constants, tau 1 = 65 and tau 2 = 250 microseconds) for the wild-type bR and three exponents (tau 1 = 55 microseconds, tau 2 = 220 microseconds and tau 3 = 1 ms) for the D96N mutant of bR. A component with tau = 1 ms was found to be present in the photocycle of the wild-type bacteriorhodopsin as a lag-phase in the relaxation of photoresponses at 400 and 520 nm. In the presence of Lu3+ ions or 80% glycerol this component was clearly seen as an additional phase of M-formation. The azide effect on the D96N mutant of bR suggests that the 1-ms component is associated with an irreversible conformational change switching the Schiff base from the outward to the inward proton channel. The maximum of the difference spectrum of the 1-ms component of D96N bR is located at 404 nm as compared to 412 nm for the first two components. We suggest that this effect is a result of the alteration of the inward proton channel due to the Asp96-->Asn substitution. Proton release measured with pyranine in the absence of pH buffers was identical for the wild-type bR and D96N mutant and matched the M-->M' conformational transition. A model for M rise in the bR photocycle is proposed.  相似文献   

11.
Differential scanning calorimetry (DSC) was used to determine the amount of water that freezes in an aqueous suspension of multilamellar dipalmitoylphosphatidylcholine (DPPC) liposomes. The studies were performed with dehydrated suspensions (12-20 wt% water) and suspensions containing an excess of water (30-70 wt% water). For suspensions that contained > or = 18 wt% water, two ice-formation events were observed during cooling. The first was attributed to heterogeneous nucleation of extraliposomal ice; the second was attributed to homogeneous nucleation of ice within the liposomes. In suspensions with an initial water concentration between 13 and 16 wt%, ice formation occurred only after homogeneous nucleation at temperatures below -40 degrees C. In suspensions containing < 13 wt% water, ice formation during cooling was undetectable by DSC, however, an endotherm resulting from ice melting during warming was observed in suspensions containing > or = 12 wt% water. In suspensions containing < 12 wt% water, an endotherm corresponding to the melting of ice was not observed during warming. The amount of ice that formed in the suspensions was determined by using an improved procedure to calculate the partial area of the endotherm resulting from the melting of ice during warming. The results show that a substantial proportion of water associated with the polar headgroup of phosphatidylcholine can be removed by freeze-induced dehydration, but the amount of ice depends on the thermal history of the samples. For example, after cooling to -100 degrees C at rates > or = 10 degrees C/min, a portion of water in the suspension remains supercooled because of a decrease in the diffusion rate of water with decreasing temperature. A portion of this supercooled water can be frozen during subsequent freeze-induced dehydration of the liposomes under isothermal conditions at subfreezing storage temperature Ts. During isothermal storage at Ts > or = -40 degrees C, the amount of unfrozen water decreased with decreasing Ts and increasing time of storage. After 30 min of storage at Ts = -40 degrees C and subsequent cooling to -100 degrees C, the amount of water associated with the polar headgroups was < 0.1 g/g of DPPC. At temperatures > -50 degrees C, the amount of unfrozen water associated with the polar headgroups of DPPC decreased with decreasing temperature in a manner predicted from the desorption isotherm of DPPC. However, at lower temperatures, the amount of unfrozen water remained constant, in large part, because the unfrozen water underwent a liquid-to-glass transformation at a temperature between -50 degrees and -140 degrees C.  相似文献   

12.
Summary Conformational rate processes in aqueous solutions of uniformly 15N-labeled pancreatic trypsin inhibitor (BPTI) at 36°C were investigated by measuring the rotating frame relaxation times of the backbone 15N spins as a function of the spin-lock power. Two different intramolecular exchange processes were identified. A first local rate process involved the residues Cys38 and Arg39, had a correlation time of about 1.3 ms, and was related to isomerization of the chirality of the disulfide bond Cys14-Cys38. A second, faster motional mode was superimposed on the disulfide bond isomerization and was tentatively attributed to local segmental motions in the polypeptide sequence-Cys14-Ala15-Lys16-. The correlation time for the overall rotational tumbling of the protein was found to be 2 ns, using the assumption that relaxation is dominated by dipolar coupling and chemical shift anistropy modulated by isotropic molecular reorientation.Abbreviations BPTI basic pancreatic trypsin inhibitor - 2D two-dimensional - COSY 2D correlation spectroscopy - TOCSY 2D total correlation spectroscopy - RF radio frequency - CW continuous wave - TPPI time-proportional phase incrementation - CSA chemical shift anisotropy - T1 longitudinal relaxation time - T2 transverse relaxation time - T1 relaxation time in the rotating frame , correlation time for overall rotational reorientation of the protein - ex s , ex f , correlation times for two conformational exchange processes (slow and fast).  相似文献   

13.
We measured the 31P[1H] Nuclear Overhauser Effect (NOE) as a function of temperature and of 1H irradiation frequency, the linewidth Δν12 as a function of temperature and the relaxation time T1 above and below the thermal transition temperature, of the 31P-NMR signal in sonicated liposomes of 1,2-dimiristoyl-3-sn-phosphatidylcholine (DMPC), 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) and 1,2-dimiristoyl-3-sn-phosphatidylcholine (DSPC). The same measurements were repeated in the presence of high molecular weight dextrans. They strongly reduce the NOE and produce longer relaxation times T1. According to the current models, we were able to evaluate, in the different situations, the correlation time of the internal motion τG and the distance r between interacting groups in the region of the polar head groups. While the first parameter changes abruptly through the phase transition and under the effect of dextrans, the latter does not appear modified in any case. These results are discussed in terms of a conformational change of the phosphocholine head groups.  相似文献   

14.
The voltage dependence of light-induced proton pumping was studied with bacteriorhodopsin (bR) from Halobacterium salinarum, expressed in the plasma membrane of oocytes from Xenopus laevis in the range -160 mV to +60 mV at different light intensities. Depending on the applied field, the quenching effect by blue light, which bypasses the normal photo and transport cycle, is drastically increased at inhibiting (negative) potentials, and is diminished at pump current increasing (positive) potentials. At any potential, two processes with different time constants for the M --> bR decay of approximately 5 ms (tau1) and approximately 20 ms (tau2) are obtained. At pump-inhibiting potentials, a third, long-lasting process with tau3 approximately 300 ms at neutral pH is observed. The fast processes (tau1, tau2) can be assigned to the decay of M2 in the normal pump cycle, i.e., to the reprotonation of the Schiff base via the cytoplasmic side, whereas tau3 is due to the decay of M1 without net pumping, i.e., the reprotonation of the Schiff base via the extracellular side. The results are supported by determination of photocurrents induced by bR on planar lipid films. The pH dependence of the slow decay of M1 is fully in agreement with the interpretation that the reprotonation of the Schiff base occurs from the extracellular side. The results give strong evidence that an externally applied electrical field changes the ratio of the M1 and the M2 intermediate. As a consequence, the transport cycle branches into a nontransporting cycle at negative potentials. This interpretation explains the current-voltage behavior of bR on a new basis, but agrees with the isomerisation, switch, transfer model for vectorial transport.  相似文献   

15.
High-speed atomic force microscopy (HS-AFM) is becoming a reference tool for the study of dynamic biological processes. The spatial and time resolutions of HS-AFM are on the order of nanometers and milliseconds, respectively, and allow structural and functional characterization of biological processes at the single-molecule level. In this work we present contact-mode HS-AFM movies of purple membranes containing two-dimensional arrays of bacteriorhodopsin (bR). In high-resolution movies acquired at a 100 ms frame acquisition time, the substructure on individual bR trimers was visualized. In regions in between different bR arrays, dynamic topographies were observed and interpreted as motion of the bR trimers. Similarly, motion of bR monomers in the vicinity of lattice defects in the purple membrane was observed. Our findings indicate that the bR arrays are in a mobile association-dissociation equilibrium. HS-AFM on membranes provides novel perspectives for analyzing the membrane diffusion processes of nonlabeled molecules.  相似文献   

16.
NMR water-proton spin-lattice relaxation times were studied as probes of water structure in human red blood cells and red blood cell suspensions. Normal saline had a relaxation time of about 3000 ms while packed red blood cells had a relaxation time of about 500 ms. The relaxation time of a red cell suspension at 50% hematocrit was about 750 ms showing that surface charges and polar groups of the red cell membrane effectively structure extracellular water. Incubation of red cells in hypotonic saline increases relaxation time whereas hypertonic saline decreases relaxation time. Relaxation times varied independently of mean corpuscular volume and mean corpuscular hemoglobin concentration in a sample population. Studies with lysates and resealed membrane ghosts show that hemoglobin is very effective in lowering water-proton relaxation time whereas resealed membrane ghosts in the absence of hemoglobin are less effective than intact red cells.  相似文献   

17.
Positively charged hydrophobic spin labels have been synthesized which respond to transmembrane potentials in sonicated liposomes. Electron paramagnetic resonance spectroscopy is used to show that the distribution of these probes between aqueous and membrane phases changes as a function of transmembrane potential. When liposomes are made more inside-negative, the fraction of membrane associated probe increases while the fraction of probe in the aqueous phase decreases. The results are in quantitative agreement with a simple equilibrium thermodynamic theory which allows estimation of absolute transmembrane potentials in phospholipid vesicles.  相似文献   

18.
Multilamellar liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distribution of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome prepartion. Liver uptake of encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from the liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

19.
Dielectric measurements in the MHz region of bacteriorhodopsin (bR) in aqueous solution have shown the existence of 1-dispersion with five distinct parts. This dispersion and the -dispersion at low frequencies conform approximately to the Debye relaxation equations. The derived apparent relaxation times showed dependence on various physical parameters. The relaxation effect at low frequencies is attributed to the reorientation of bR chromophore within the purple membrane (PM) fragments. The mechanism which gives rise to the 1-dispersion may well be due to the Maxwell-Wagner effect, although the first two parts of the dispersion could also be attributed to counterion relaxation or to bR reorientation.  相似文献   

20.
Positive liposomes consisting of phosphatidylcholine, cholesterol and stearylamine and negatively charged liposomes consisting of phosphatidylcholine, cholesterol and phosphatidylserine, were double labelled with either 3H-labelled dipalmitoyl phosphatidylcholine and [14C]cholesterol or with [14C]cholesterol and [3H]methotrexate entrapped in the aqueous phase. The plasma levels and urinary excretion of radioactivity from sonicated and non-sonicated liposomes were then compared with the levels of radioactivity from free [3H]methotrexate during a 4 h experimental period after an initial intravenous injection in cynomolgous monkeys. Tissue uptake at the completion of the 4 h experimental period was also measured.It was found that plasma radioactivity from [3H]methotrexate and [14C]cholesterol in sonicated positive liposomes was cleared more slowly than from comparable non-sonicated liposomes, and considerably slower than from free [3H]methotrexate. Radioactivity from sonicated negative liposomes was cleared more rapidly than from positive sonicated liposomes. Positive liposomes captured considerably more [3H]methotrexate than negative liposomes and showed very low permeability to [3H]methotrexate in in vitro studies, even in the presence of high concentrations of serum.[14C]Cholesterol radioactivity was cleared more rapidly from plasma than 3H-radioactivity from liposome-entrapped [3H]methotrexate for double-labelled sonicated liposomes and generally showed greater uptake into tissues and red blood cells. 3H-labelled dipalmitoyl phosphatidylcholine in sonicated positive liposomes was cleared faster than [14C]cholesterol during the first 3 h. The more rapid disappearance of [14C]cholesterol from the plasma was complemented by greater uptake into a number of tissues, and positive non-sonicated liposomes were taken up to a greater extent by the spleen than equivalent sonicated liposomes.Renal excretion of 3H from liposome-entrapped [3H]methotrexate was considerably less than that of 3H from free [3H]methotrexate. There was insignificant excretion, however, of 14C from cholesterol in the urine.Entrapment in liposomes completely prevented the otherwise considerable breakdown of free methotrexate to 3H-containing products in plasma and partially prevented its breakdown in tissues.These studies indicate marked differences in the distribution of liposomes in vivo due to surface charge and size, and some degree of exchange of the lipid components of the liposome bilayer independent of the distribution of the entrapped species. They also show that entrapment in liposomes can reduce metabolic degradation of a drug, maintain high plasma levels and reduce its renal excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号