首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monje PV  Baran EJ 《Phytochemistry》2005,66(5):611-614
The X-ray diffractometric and infrared spectroscopic investigation of crystalline material isolated from the Cactaceae species Opuntia ellisiana shows the presence of a very complex mineral composition, including whewellite (monohydrated calcium oxalate), opal (SiO2), calcite (CaCO3) and glushinskite (dihydrated magnesium oxalate). This is the first report of the presence of magnesium oxalate in plants.  相似文献   

2.
Tobacco (Nicotiana tabacum L. cv Xanthi) plants were exposed to toxic levels of zinc (Zn). Zn exposure resulted in toxicity signs in plants, and these damages were partly reduced by a calcium (Ca) supplement. Confocal imaging of intracellular Zn using Zinquin showed that Zn was preferentially accumulated in trichomes. Exposure to Zn and Zn + Ca increased the trichome density and induced the production of Ca/Zn mineral grains on the head cells of trichomes. These grains were aggregates of submicrometer-sized crystals and poorly crystalline material and contained Ca as major element, along with subordinate amounts of Zn, manganese, potassium, chlorine, phosphorus, silicon, and magnesium. Micro x-ray diffraction revealed that the large majority of the grains were composed essentially of metal-substituted calcite (CaCO3). CaCO3 polymorphs (aragonite and vaterite) and CaC2O4 (Ca oxalate) mono- and dihydrate also were identified, either as an admixture to calcite or in separate grains. Some grains did not diffract, although they contained Ca, suggesting the presence of amorphous form of Ca. The presence of Zn-substituted calcite was confirmed by Zn K-edge micro-extended x-ray absorption fine structure spectroscopy. Zn bound to organic compounds and Zn-containing silica and phosphate were also identified by this technique. The proportion of Zn-substituted calcite relative to the other species increased with Ca exposure. The production of Zn-containing biogenic calcite and other Zn compounds through the trichomes is a novel mechanism involved in Zn detoxification. This study illustrates the potential of laterally resolved x-ray synchrotron radiation techniques to study biomineralization and metal homeostasis processes in plants.  相似文献   

3.
Larger symbiont-bearing foraminifera are prominent and important producers of calcium carbonate in modern tropical environments. With an estimated production of at least 130 million tons of CaCO(3) per year, they contribute almost 5% of the annual present-day carbonate production in the world's reef and shelf areas (0-200 m) and approximately 2.5% of the CaCO(3) of all oceans. Together with non-symbiont-bearing smaller foraminifera, all benthic foraminifera are estimated to annually produce 200 million tons of calcium carbonate worldwide. The majority of foraminiferal calcite in modern oceans is produced by planktic foraminifera. With an estimated annual production of at least 1.2 billion tons, planktic foraminifera contribute more than 21% of the annual global ocean carbonate production. Total CaCO(3) of benthic and planktic foraminifera together amounts to 1.4 billion tons of calcium carbonate per year. This accounts to almost 25% of the present-day carbonate production of the oceans, and highlights the importance of foraminifera within the CaCO(3) budget of the world's oceans.  相似文献   

4.
Hou W  Lian B  Zhang X 《Bioresource technology》2011,102(2):1562-1566
Formation of CaCO3 induced by fungal physiological activities is a potential way to sequestrate atmospheric CO2 in ecosystem. Alternaria sp. is a saprophytic fungus isolated from a forest soil. We examined the precipitation of CaCO3 induced by the fungus in response to different levels of Ca(NO3)2 or CaCl2 in agar media, and the biogenesis of CaCO3 was verified by low δ13C value. The formed CaCO3 was identified as calcite by X-ray diffraction analysis. Square, rectangular and rhombic CaCO3 crystals and amorphous calcium carbonate were observed around mycelia at higher levels of Ca(NO3)2. Acidification occurred in media at low concentrations (0 and 0.0002 M) of Ca(NO3)2, and no CaCO3 formed in these media. The quantities of CaCO3 formed in media increased with increasing concentrations of Ca(NO3)2 and were significantly correlated to fungal biomass, pH value and nitrite concentrations. No CaCO3 was formed in media with CaCl2 at all levels. These results collectively indicated that the formation of CaCO3 can be induced by the fungal assimilation of nitrate. The study also revealed that biogenic crystal of CaCO3 tended to grow on a silicon nucleus and the amorphous calcium carbonate (ACC) was the transient stage of CaCO3 crystal.  相似文献   

5.
Laboratory-scale biotreaters were used to study the effects of NH(3)-N and PO(4)-P nutrients on the activated sludge treatment of a chemical waste containing soluble calcium (1300 mg/L). Units receiving high or low levels of NH(3)-N and PO(4)-P were similar in their ability to remove organic compounds from the waste. Adaptation of sludges to low PO(4)-P levels (<0.1 mg/L effluent) resulted in a marked accumulation of CaCO(3) in the biosolids, whereas those receiving high PO(4)-P (2-4 mg/L effluent) had little CaCO(3). Microscopic observations of CaCO(3) containing sludges showed substantial amounts of CaCO(3) crystals imbedded in the biomass. These flocs also appeared to be enriched with nonfilamentous bacterial species in contrast to flocs devoid of CaCO(3) which had a floc structure of filamentous and nonfilamentous organisms. Scanning electron micrographs of flocs grown under low NH(3)-N showed a microbial fibrillar network of exocellular material interconnecting cells in the floc matrix. The sludges adapted to low NH(3)-N also produced higher amounts of extractable polysaccharide. CaCO(3) containing biosolids were more dense, larger, and settled better (low SVI, high ISV) than flocs devoid of the precipitates. It is not known from our experiments whether PO(4)-P or some inorganic or organic polymer produced by the floc bacteria are involved in inhibiting CaCO(3) precipitation in the activated sludge treatment of calcium-containing wastes.  相似文献   

6.
The infrared spectroscopic investigation of biominerals isolated from different Cactaceae species belonging to the Opuntioideae subfamily shows the presence of a very complex mineral composition, including whewellite (monohydrated calcium oxalate), opal (SiO2) and calcite (CaCO3). This is the first report on the presence of a calcium carbonate in these types of plants.  相似文献   

7.
This research studies the crystalline compounds present in nopal (Opuntia ficus-indica) cladodes. The identification of the crystalline structures was performed using X-ray diffraction, scanning electron microscopy, mass spectrometry, and Fourier transform infrared spectroscopy. The crystalline structures identified were calcium carbonate (calcite) [CaCO3], calcium-magnesium bicarbonate [CaMg(CO3)2], magnesium oxide [MgO], calcium oxalate monohydrate [Ca(C2O4)•(H2O)], potassium peroxydiphosphate [K4P2O8] and potassium chloride [KCl]. The SEM images indicate that calcite crystals grow to dipyramidal, octahedral-like, prismatic, and flower-like structures; meanwhile, calcium-magnesium bicarbonate structures show rhombohedral exfoliation and calcium oxalate monohydrate is present in a drusenoid morphology. These calcium carbonate compounds have a great importance for humans because their bioavailability. This is the first report about the identification and structural analysis of calcium carbonate and calcium-magnesium bicarbonate in nopal cladodes, as well as the presence of magnesium oxide, potassium peroxydiphosphate and potassium chloride in these plants. The significance of the study of the inorganic components of these cactus plants is related with the increasing interest in the potential use of Opuntia as a raw material of products for the food, pharmaceutical, and cosmetic industries.  相似文献   

8.
Mollusk shell nacre is known for its superior mechanical properties and precisely controlled biomineralization process. However, the question of how mollusks control the morphology of nacre lamellae remains unresolved. Here, a novel 38-kDa extrapallial fluid (EPF) protein, named amorphous calcium carbonate-binding protein (ACCBP), may partially answer this question. Although sequence analysis indicated ACCBP is a member of the acetylcholine-binding protein family, it is actively involved in the shell mineralization process. In vitro, ACCBP can inhibit the growth of calcite and induce the formation of amorphous calcium carbonate. When ACCBP functions were restrained in vivo, the nacre lamellae grew in a screw-dislocation pattern, and low crystallinity CaCO(3) precipitated from the EPF. Crystal binding experiments further revealed that ACCBP could recognize different CaCO(3) crystal phases and crystal faces. With this capacity, ACCBP could modify the morphology of nacre lamellae by inhibiting the growth of undesired aragonite crystal faces and meanwhile maintain the stability of CaCO(3)-supersaturated body fluid by ceasing the nucleation and growth of calcite. Furthermore, the crystal growth inhibition capacity of ACCBP was proved to be directly related to its acetylcholine-binding site. Our results suggest that a "safeguard mechanism" of undesired crystal growth is necessary for shell microstructure formation.  相似文献   

9.
We studied the formation of exocellular precipitates of struvite (Mg NH4PO4.6H2O) by 96 kinds of calcite‐pro‐ducing bacterial strains isolated from soil. We also studied the influence of calcium ions on struvite precipitation. The number of strains producing struvite was 20. Only four consistently formed large amounts. These results seem to indicate that the bacterial precipitation of struvite is not a general phenomenon. The strains studied were taxonomically identified, and no relationship was found between the production of struvite and the taxonomic identity of such strains. Calcium, supplied as Ca acetate in the culture medium, appeared to inhibit the biological precipitation of struvite.  相似文献   

10.
To understand the mechanism of quail eggshell biomineralization, we have performed two CaCO(3) precipitation experiments. In the reprecipitation experiments, supersaturated Ca(HCO(3))(2) was prepared by bubbling CO(2) through a slurry of biogenic CaCO(3) obtained from bleach-treated eggshell followed by filtration to obtain a clear solution for crystallization experiments. The nucleated crystals were collected at various time intervals and analyzed. In the second experiment, the extracted SOM from the bleach-treated eggshell was added to the supersaturated clear solution of Ca(HCO(3))(2) solution obtained by bubbling CO(2) gas through a slurry of synthetic CaCO(3) followed by filtration. The crystals/precipitates collected at various time intervals were analyzed. Both experiments showed that amorphous CaCO(3) (ACC) was precipitated in the early stages, which then transformed to the most stable crystalline calcite phase. Amino acid analysis of the soluble organic matrixes (SOM) indicated the presence of high amounts of Glx and Asx amino acids. Ovomucoid--an acidic glycoprotein, and lysozyme--a basic protein, are the two major components along with a few low molecular weight peptides present in the SOM of quail eggshell matrix. Both ovomucoid and lysozyme did not induce precipitation of the ACC phase in in vitro conditions, while the fraction containing low molecular weight peptides induced the precipitation of ACC, suggesting that the latter play an important role in the eggshell biomineralization. Thus, organisms can produce inorganic minerals which assume nonequilibrium morphologies and intricate architecture by precipitating transient ACC, which then transformed into the crystalline phase. Altogether, these observations further demonstrate that this strategy may be common in both vertebrate and invertebrate mineralized structures.  相似文献   

11.
The structure-directing influence of the organic dicarboxylates malonate, succinate, glutarate and adipate as templating species on the hydrothermal formation of CaCO(3) was investigated at different temperatures (60, 80, 90, 120, 150 and 190 degrees C) and with a range of molar ratios of [Ca(2+)]/[templating species] (20, 14.3, 10, 7.7, 5, 1, 0.5 and 0.33). In the presence of the dicarboxylates, one, two or three polymorphs of CaCO(3) - calcite, aragonite and vaterite - could be formed, depending on the reaction conditions. In addition changes in crystal morphology were observed for the CaCO(3) polymorphs depending on the concentration of the template. In contrast, synthesis under ambient conditions of temperature and pressure resulted only in calcite formation, although template-dependent morphological changes were again observed. Crystalline products were all characterized by powder X-ray patterns and SEM (Scanning Electron Microscopy) micrographs. The ambient reactions with the chelating, dinucleating carboxylato ligands H(3)heidi and H(5)hpdta produce more profound changes in calcite morphology. With H(3)heidi rounded calcite crystals with shapes similar to that of otoliths are formed and with H(5)hpdta the formation of microtrumpets of constructed from bundles of nanocrystals of calcite is observed. The possible mode of action of these ligands on calcite formation is discussed in the context of known coordination chemistry with other metal ions.  相似文献   

12.
VB Chan  C Li  AC Lane  Y Wang  X Lu  K Shih  T Zhang  V Thiyagarajan 《PloS one》2012,7(8):e42718
As a consequence of anthropogenic CO(2-)driven ocean acidification (OA), coastal waters are becoming increasingly challenging for calcifiers due to reductions in saturation states of calcium carbonate (CaCO(3)) minerals. The response of calcification rate is one of the most frequently investigated symptoms of OA. However, OA may also result in poor quality calcareous products through impaired calcification processes despite there being no observed change in calcification rate. The mineralogy and ultrastructure of the calcareous products under OA conditions may be altered, resulting in changes to the mechanical properties of calcified structures. Here, the warm water biofouling tubeworm, Hydroides elegans, was reared from larva to early juvenile stage at the aragonite saturation state (Ω(A)) for the current pCO(2) level (ambient) and those predicted for the years 2050, 2100 and 2300. Composition, ultrastructure and mechanical strength of the calcareous tubes produced by those early juvenile tubeworms were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and nanoindentation. Juvenile tubes were composed primarily of the highly soluble CaCO(3) mineral form, aragonite. Tubes produced in seawater with aragonite saturation states near or below one had significantly higher proportions of the crystalline precursor, amorphous calcium carbonate (ACC) and the calcite/aragonite ratio dramatically increased. These alterations in tube mineralogy resulted in a holistic deterioration of the tube hardness and elasticity. Thus, in conditions where Ω(A) is near or below one, the aragonite-producing juvenile tubeworms may no longer be able to maintain the integrity of their calcification products, and may result in reduced survivorship due to the weakened tube protection.  相似文献   

13.
It has been proposed that crustaceans should be excluded from a comparison of biological responses to ocean acidification among organisms with different calcium carbonate (CaCO3 ) forms in their calcified structures. We re-analysed our data without crustaceans and found high variation in organismal responses within CaCO3 categories. We conclude that the CaCO3 polymorph alone does not predict sensitivity, and a consideration of functional differences among organisms is necessary for predicting variation in response to acidification.  相似文献   

14.
Ries JB  Anderson MA  Hill RT 《Geobiology》2008,6(2):106-119
A previously published hydrothermal brine-river water mixing model driven by ocean crust production suggests that the molar Mg/Ca ratio of seawater (mMg/Ca(sw)) has varied significantly (approximately 1.0-5.2) over Precambrian time, resulting in six intervals of aragonite-favouring seas (mMg/Ca(sw) > 2) and five intervals of calcite-favouring seas (mMg/Ca(sw) < 2) since the Late Archaean. To evaluate the viability of microbial carbonates as mineralogical proxy for Precambrian calcite-aragonite seas, calcifying microbial marine biofilms were cultured in experimental seawaters formulated over the range of Mg/Ca ratios believed to have characterized Precambrian seawater. Biofilms cultured in experimental aragonite seawater (mMg/Ca(sw) = 5.2) precipitated primarily aragonite with lesser amounts of high-Mg calcite (mMg/Ca(calcite) = 0.16), while biofilms cultured in experimental calcite seawater (mMg/Ca(sw) = 1.5) precipitated exclusively lower magnesian calcite (mMg/Ca(calcite) = 0.06). Furthermore, Mg/Ca(calcite )varied proportionally with Mg/Ca(sw). This nearly abiotic mineralogical response of the biofilm CaCO3 to altered Mg/Ca(sw) is consistent with the assertion that biofilm calcification proceeds more through the elevation of , via metabolic removal of CO2 and/or H+, than through the elevation of Ca2+, which would alter the Mg/Ca ratio of the biofilm's calcifying fluid causing its pattern of CaCO3 polymorph precipitation (aragonite vs. calcite; Mg-incorporation in calcite) to deviate from that of abiotic calcification. If previous assertions are correct that the physicochemical properties of Precambrian seawater were such that Mg/Ca(sw) was the primary variable influencing CaCO3 polymorph mineralogy, then the observed response of the biofilms' CaCO3 polymorph mineralogy to variations in Mg/Ca(sw), combined with the ubiquity of such microbial carbonates in Precambrian strata, suggests that the original polymorph mineralogy and Mg/Ca(calcite )of well-preserved microbial carbonates may be an archive of calcite-aragonite seas throughout Precambrian time. These results invite a systematic evaluation of microbial carbonate primary mineralogy to empirically constrain Precambrian seawater Mg/Ca.  相似文献   

15.
Synthetic substrate consisting of oak sawdust (50%), white millet (28%), winter rye (11%) and soft red wheat bran (11%) was non-supplemented or supplemented with 0.2%, 0.4% or 0.6% (dry weight basis) precipitated calcium carbonate (CaCO(3)). Shiitake (Lentinula edodes) was grown in two crops to determine the effect of three CaCO(3) levels on mushroom yield and size. Yields and biological efficiencies (averages for two crops) from substrates non-supplemented with CaCO(3) were lower by 14.1%, 18.4% and 24.9% compared to treatments supplemented with 0.2%, 0.4% and 0.6% CaCO(3), respectively. Mushroom size (weight) was larger with non-supplemented substrate (16.8 g) compared to substrate supplemented with 0.6% CaCO(3) (15.1 g). However, mushroom production was more consistent from crop to crop when 0.6% CaCO(3) was added to substrate.  相似文献   

16.
Ovocleidin-17 (OC17) from Gallus gallus is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. Here, the crystal structure of monomeric OC17, determined at a resolution of 1.5 A, was refined to a crystallographic R-factor of 20.1%. This is the first protein directly involved in a non-pathological biomineralization process resolved by x-ray diffraction to date. The protein has a mixed alpha/beta structure containing a single C-type lectin-like domain. However, although OC17 shares the conserved scaffold of the C-type lectins, it does not bind carbohydrates. Nevertheless, in vitro OC17 modifies the crystalline habit of calcium carbonate (CaCO3) and the pattern of crystal growth at intervals of 5-200 microg/ml. Determining the three-dimensional structure of OC17 contributes to a better understanding of the biological behavior of structurally related biomolecules and of the mechanisms involved in eggshell and other mineralization processes.  相似文献   

17.
Microscopic observations of calcrete soil samples in semiarid environments from Israel reveal a particular vesicular microfabric. The calcrete horizon is indurated but highly porous and all the pores are coated with a gray layer (quasi‐coating) of secondary calcium carbonate. Two kinds of needles are found inside the pores: thin and regular needles (calcite), and filaments with very sharp spikes that are of fungal origin. Analysis of the proportions of C, O, and Ca were made with an E.D.S. microprobe connected with a scanning electron microscope to distinguish calcite (CaCO3) from calcium oxalate (CaC2O4) and to differentiate inorganic from organic influences. Under biological control, calcium oxalate coexists with calcium carbonate; both contribute to rock diagenesis. In the pores, biological activity promotes a complex cycling of calcium leading to recementation of the matrix and further lithification. Thus, this kind of calcrete is due to geological evolution as much as to biochemical control.  相似文献   

18.
Microbiologically induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has shown its potential in remediation of a wide range of structural damages including concrete cracks. In this study, genetically engineered microorganisms, capable of producing extracellular polymeric substances (EPSs) as well as inducing MICCP, were developed based on the assumption that the complex of inorganic CaCO(3) and organic EPS would provide a stronger matrix than MICCP alone as biosealant. In order to develop a recombinant biosealant microorganism, the entire Sporosarcina pasteurii urease gene sequences including ureA, ureB, ureC, ureD, ureE, ureF, and ureG from plasmid pBU11 were sub-cloned into the shuttle vector, pUCP18. The newly constructed plasmid, pUBU1, was transformed into two Pseudomonas aeruginosa strains, 8821 and PAO1, to develop recombinants capable of inducing calcite precipitation in addition to their own ability to produce EPS. Nickel-dependent urease activities were expressed from the recombinant P. aeruginosa 8821 (pUBU1) and P. aeruginosa PAO1 (pUBU1), at 99.4% and 60.9% of the S. pasteurii urease activity, respectively, in a medium containing 2mM NiCl(2). No urease activities were detected from the wild type P. aeruginosa 8821 and P. aeruginosa PAO1 under the same growth conditions. Recombinant Pseudomonas strains induced CaCO(3) precipitation at a comparable rate as S. pasteurii and scanning electron microscopy evidenced the complex of CaCO(3) crystals and EPS layers surrounding the cells. The engineered strains produced in this study are expected to serve as a valuable reference to future biosealants that could be applied in the environment. However, the pathogenic potential of P. aeruginosa, used here only as a model system to show the proof of principle, prevents the use of this recombinant organism as a biosealant. In practical applications, other recombinant organisms should be used.  相似文献   

19.
CaCO3结晶广泛分布于生物界,其主要结晶形式为方解石、霰石及球霰石。用X-射线衍射法对三角帆蚌及合浦珍珠母贝的珍珠层、墨鱼骨和大黄鱼耳石的CaCO3结晶进行测定,发现各样品均有一定取向性,以三角帆蚌和合浦珍珠母贝珍珠层的取向性为最强,墨鱼骨的取向性次之,大黄鱼耳石的取向性最小,以上材料粉末样的衍射分析表明,各样品对应d值间差异极小,均为X射线衍射卡(5—0453)所表征的CaCO3霰石结构。  相似文献   

20.
软骨及硬骨鱼以及其它高等脊椎动物耳石中,CaCO_3占绝大部分.本文主要以X射线衍射分析对白姑鱼,大黄鱼,小黄鱼三种石首鱼科鱼类耳石作了分析,发现CaCO_3结晶均为霰石结构.依文献,对耳石晶相结构在动物分类上的意义作了初步讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号